精英家教网 > 高中数学 > 题目详情
双曲线与椭圆的离心率互为倒数,则(  )
A.B.C.D.
B.

试题分析:由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为,然后由题意得,即,将其两边平方化简即可得出结论.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m∈R,则动圆x2+y2+4mx-2my+6m2-4=0的圆心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1(k∈R)与焦点在x轴上的椭圆恒有公共点,则t的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP(O为坐标原点)的斜率为k2,则k1k2等于(  )
A.-2B.2C.-D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆.
(1)求椭圆的离心率;
(2)设为原点,若点在椭圆上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步练习册答案