精英家教网 > 高中数学 > 题目详情

【题目】关于下列命题:
①函数y=tanx的一个对称中心是( ,0);
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一条对称轴是x=﹣
④函数y=sin(x+ )在闭区间[﹣ ]上是增函数.
写出所有正确的命题的题号

【答案】①③
【解析】解:对于函数y=tanx,当x= 时,y无意义,故y=tanx的图象的一个对称中心是( ,0),故①正确.
∵函数y=cos2( ﹣x)=cos( ﹣2x)=sin2x,故它是奇函数,故②错误;
令2x﹣ =kπ+ ,k∈Z,求得x= + ,可得函数y=4sin(2x﹣ )的一条对称轴是x=﹣ ,故③正确;
在区间[﹣ ]上,x+ ∈[﹣ ],函数y=sin(x+ )在闭区间[﹣ ]上没有单调性,故④错误,
所以答案是:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且.

(1)当时,证明:平面平面

(2)当时,求平面与平面所成的二面角的正弦值及四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用斜二测画法作出边长为3cm、高4cm的矩形的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如表:

1

2

3

4

12

28

42

56

(Ⅰ)在图中画出表中数据的散点图;

(Ⅱ)根据(Ⅰ)中的散点图拟合的回归模型,并用相关系数甲乙说明;

(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.

附注:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在四棱锥PABCD中,平面PAD底面ABCD,其中底面ABCD为等腰梯形,ADBC

PAABBCCD=2,PD=2PAPDQPD的中点.

(Ⅰ)证明:CQ∥平面PAB

(Ⅱ)求三棱锥Q-ACD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下

方式

实施地点

大雨

中雨

小雨

模拟实验次数

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:

1)求甲、乙、丙三地都恰为中雨的概率;

2考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记甲、乙、丙三地中缓解旱情的个数为随机变量,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=xln(x+ )为偶函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】园林管理处拟在公园某区域规划建设一半径为米圆心角为(弧度)的扇形景观水池,其中为扇形的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过万元,水池造价为每平方米元,步道造价为每米元.

(1)当分别为多少时,可使广场面积最大,并求出最大值;

(2)若要求步道长为米,则可设计出水池最大面积是多少.

查看答案和解析>>

同步练习册答案