精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=xln(x+ )为偶函数,则a=

【答案】1
【解析】解:∵f(x)=xln(x+ )为偶函数, ∴f(﹣x)=f(x),
∴(﹣x)ln(﹣x+ )=xln(x+ ),
∴﹣ln(﹣x+ )=ln(x+ ),
∴ln(﹣x+ )+ln(x+ )=0,
∴ln( +x)( ﹣x)=0,
∴lna=0,
∴a=1.
所以答案是:1.
【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:
①函数y=tanx的一个对称中心是( ,0);
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一条对称轴是x=﹣
④函数y=sin(x+ )在闭区间[﹣ ]上是增函数.
写出所有正确的命题的题号

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ为常数), 求:
(1) 及| |;
(2)若f(x)的最小值是 ,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是为求S=1+ + +… 的和而设计的程序框图,将空白处补上,指明它是循环结构中的哪一种类型,并画出它的另一种循环结构框图.如图是当型循环结构.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆,直线的极坐标方程分别是 .

(1)求的交点的极坐标;

(2)设的圆心, 的交点连线的中点,已知直线的参数方程为为参数),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面向量 两两所成角相等,且| |=1,| |=2,| |=3,则| + + |为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知θ为向量 的夹角,| |=2,| |=1,关于x的一元二次方程x2﹣| |x+ =0有实根.
(Ⅰ)求θ的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求函数f(θ)=sin(2θ+ )的最值及对应的θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 上的动点, .

(Ⅰ)若点中点,证明:平面平面

(Ⅱ)判断点到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案