精英家教网 > 高中数学 > 题目详情

【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

【答案】A

【解析】

如图,由题意 步,设 ,同理 由题意, (步) 步,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为的导函数.

(1)求方程的解集;

(2)求函数的最大值与最小值;

(3)若函数在定义域上恰有2个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用10分制调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

)若教学满意度不低于9.5分,则称该生对教师的教学满意度为极满意.求从这16人中随机选取3人,至少有1人是极满意的概率;

)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到极满意的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知焦点在轴上的椭圆的中心是原点离心率为以椭圆的端州的两端点和两焦点所围成的四边形的周长为8,直线轴交于点与椭圆交于不同两点

(1)求椭圆的标准方程

(2)若的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面.

(1)求证:平面

(2)点在线段上运动,设平面与平面所成二面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若,试讨论关于的方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),,且直线与曲线相切.

(1)求的值;

(2)若对内的一切实数,不等式恒成立,求实数的取值范围;

(3)求证: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处切线与直线垂直(其中为自然对数的底数).

(1)求的解析式及单调减区间;

(2)是否存在常数,使得对于定义域的任意恒成立,若存在,求出 的值;若

不存在,说明理由.

查看答案和解析>>

同步练习册答案