【题目】如图,在梯形
中,
,四边形
为矩形,平面
平面
.
(1)求证:
平面
;
(2)点
在线段
上运动,设平面
与平面
所成二面角为
,试求
的取值范围.
![]()
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)证明线面垂直可以利用面面垂直进行证明,即若两个平面垂直并且其中一个平面内的一条直线
与两个平面的交线操作时则直线
与另一个平面垂直,即可证明线面垂直;(2)建立空间坐标系,根据坐标表示出两个平面的法向量,结合向量的有关运算求出二面角的余弦的表达式,再利用函数的有关知识求出余弦的范围.
试题解析:(1)证明:在梯形
中,因为
,所以
,所以
,
所以
,所以
.
因为平面
平面
,平面
平面
,
平面
,所以
平面
.
(2)由(1)可建立分别以直线
为
轴,
轴,
轴的如图所示的空间直角坐标系,
令
,则
,
∴
,
设
为平面
的一个法向量,
由
得
,取
,则
,
∵
是平面
的一个法向量.
∴
.
∵
,∴当
时,
有最小值
,当
时,
有最大值
.
∴
.
![]()
科目:高中数学 来源: 题型:
【题目】在实数
中定义一种新运算:
,对实数
经过运算
后是一个确定的唯一的实数。
运算有如下性质:(1)对任意实数
,
;(2)对任意实数
,
那么:关于函数
的性质下列说法正确的是:①函数
的最小值为3;②函数
是偶函数;③函数
在
上为减函数,这三种说法正确的有__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为
分)作为样本(样本容量为
)进行统计.按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
的数据).
![]()
![]()
(1)求样本容
和频率分布直方图中
的值并求出抽取学生的平均分;
(2)在选取的样本中,从竞赛成绩在
分以上(含
分)的学生中随机抽取
名学生参加“全市中数学竞赛”求所抽取的
名学生中至少有一人得分在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥PABCD中,底面ABCD是正方形,侧棱PD垂直于底面ABCD,PD=DC,点E是PC的中点.
![]()
(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角EBDP的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组研究发现:一棵水蜜桃树的产量
(单位:百千克)与肥料费用
(单位:百元)满足如下关系:
,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)
百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为
(单位:百元).
(1)求利润函数
的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对某课题进行研究,用分层抽样方法从三所高校
的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 | 相关人数 | 抽取人数 |
A | 18 |
|
B | 36 | 2 |
C | 54 |
|
(Ⅰ)求
,
;
(Ⅱ)若从高校
抽取的人中选2人作专题发言,求这二人都来自高校
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com