精英家教网 > 高中数学 > 题目详情

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

高校

相关人数

抽取人数

A

18


B

36

2

C

54


)求

)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)利用分层抽样的特点(等比例抽样)进行求解;(Ⅱ)利用列举法得到所有和符合题意的基本事件和基本事件个数,再利用古典概型的概率公式进行求解.

试题解析:()由题意可得.

)记从高校抽取的2人为,从高校抽取的3人为,则从高校抽取的5人中选2人作专题发言的基本事件有,共10.

设选中的2人都来自高校的事件为,则包含的基本事件有,共3种,

因此,故选中的2人都来自高校的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面.

(1)求证:平面

(2)点在线段上运动,设平面与平面所成二面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列的前项和,且 .

(1)求数列的通项公式;

(2)若,求证:

(3)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

180

女大学生

45

合计

200

(Ⅰ)根据题意完成表格;

(Ⅱ)是否有的把握认为愿意做志愿者工作与性别有关?

附:

0.5

0.40

0.25

0.15

0.10

0.455

0.708

1.323

.072

2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处切线与直线垂直(其中为自然对数的底数).

(1)求的解析式及单调减区间;

(2)是否存在常数,使得对于定义域的任意恒成立,若存在,求出 的值;若

不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

Ⅰ.请完成上面的列联表;

Ⅱ.根据列联表的数据,是否有的把握认为“成绩与班级有关系”.

参考公式与临界值表:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的两个焦点为 ,离心率为,点 在椭圆上, 在线段上,且的周长等于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过圆 上任意一点作椭圆的两条切线与圆交于点 ,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A在直角坐标系中,曲线的参数方程为,( 为参数),直线的方程为为极点, 轴的正半轴为极轴建立极坐标系.

(1)求曲线和直线的极坐标方程;

(2)若直线与曲线交于两点,求

已知不等式的解集为.

(1)求的值;

(2)若,求证:

查看答案和解析>>

同步练习册答案