精英家教网 > 高中数学 > 题目详情
若实数x,y满足条件log2x+log2(x-y)=1+2log2y,则log2
xy
=
1
1
分析:由题意得到关于
x
y
的一元二次方程,求解出
x
y
后代入要求的式子即可得到答案.
解答:解:由log2x+log2(x-y)=1+2log2y,
得x>0,y>0,且log2x(x-y)=log22y2
即x2-xy=2y2
(
x
y
)2-
x
y
-2=0

解得
x
y
=-1
(舍)或
x
y
=2

log2
x
y
=1

故答案为1.
点评:本题考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足条件
x+y-4≤0
x-2y+2≥0
x≥0,y≥0
,则z=x-y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足条件
x+y+5≤0
x+y≥0
-3≤x≤3
,z=x+yi(i为虚数单位),则|z-1+2i|的最大值和最小值分别是
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足条件x+3y-2=0,则z=1+3x+27y的最小值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)若实数x,y满足条件
x+2y-5≤0
2x+y-4≤0
x≥0
y≥1
,则目标函数z=2x-y的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+3,若实数x、y满足条件f(y)≤f(x)≤0,则
y
x
的取值范围是(  )
A、(-∞,
1
3
]
(∪[3,+∞)
B、[
1
3
,3]
C、[-3,-
1
3
]
D、[
1
3
,1)
∪(1,3]

查看答案和解析>>

同步练习册答案