精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(
1
2
,1)、C(1,0),求函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:利用一次函数的解析式的求法,求得分段函数f(x)的函数解析式,进而求得函数y=xf(x)(0≤x≤1)的函数解析式,最后利用定积分的几何意义和微积分基本定理计算所求面积即可,
解答: 解:依题意,当0≤x≤
1
2
时,f(x)=2x,当
1
2
<x≤1时,f(x)=-2x+2
∴f(x)=
2x ,x∈[0,
1
2
 ]
-2x+2 , x∈(
1
2
 ,1]

∴y=xf(x)=
x2,x∈[0,
1
2
]
-2x2+2x ,x∈(
1
2
,1]

∴y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=
1
2
0
2x2dx
+
1
1
2
(-2x2+2x)dx

=
2
3
x3
|
1
2
0
+(-
2
3
x3
+x2
|
1
1
2
=
1
4
点评:本题主要考查了分段函数解析式的求法,定积分的几何意义,利用微积分基本定理和运算性质计算定积分的方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x<-1或x≥3},则∁RA等于(  )
A、{x|x<3}
B、{x|x>-1}
C、{x|-1≤x<3}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是(-∞,+∞)上的奇函数,若对于x>0,都有f(x+2)=f(x),且当x∈(0,2]时,f(x)=2x+1,则f(-2013)+f(2014)的值为(  )
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+acosx的图象经过点(-
π
3
,0).
(1)求实数a的值;
(2)求函数f(x)的最小正周期与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a2+b2=1,c2+d2=1.
(Ⅰ)求证:ab+cd≤1.
(Ⅱ)求a+
3
b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2sinx-cosx=
10
2
,x∈(0,
π
2
),则tanx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在边长为4的正方形ABCD的边上有一动点P,沿着折线BCDA由点B起(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C的对边分别为a,b,c,已知a=2
3
,cosA=-
1
2
,b=2.
(Ⅰ)求c的值;
(Ⅱ)设f(x)=cos2x+2sin2(x+B),求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比不为1的等比数列{an}的首项a1=
1
2
,前n项和为Sn,且a4+S4,a5+S5,a6+S6成等差数列.
(1)求等比数列{an}的通项公式;
(2)对n∈N+,在an与an+1之间插入3n个数,使这3n+2个数成等差数列,记插入的这3n个数的和为bn,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案