精英家教网 > 高中数学 > 题目详情
18.已知集合A={y|y=log2x,x>1},B={x|y=$\frac{1}{\sqrt{1-2x}}$},则A∩B=(  )
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

分析 求出集合的等价条件,结合交集运算进行求解即可.

解答 解:A={y|y=log2x,x>1}={y|y>0},
B={x|y=$\frac{1}{\sqrt{1-2x}}$}={x|1-2x>0}={x|x<$\frac{1}{2}$},
则A∩B={y|0<y<$\frac{1}{2}$},
故选:A

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设无穷等差数列{an}的前n项和为Sn,已知a1=1,S3=12.
(1)求a24与S7的值;
(2)已知m、n均为正整数,满足am=Sn.试求所有n的值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若同时抛掷两枚骰子,则向上的点数之差的绝对值为3的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三角形ABC中,角A、B、C的对边分别为a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,CD∥AB,AD=DC=$\frac{1}{2}$AB.
(1)若M是PB的中点,求证:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PC,求证:平面PAC⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有实数根的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系内,区域M满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤1\end{array}$区域N满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤sinx\end{array}$则向区域M内投一点,落在区域N内的概率是(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A(4,1,3)、B(2,-5,1),C为线段AB上的一点,且满足$\overrightarrow{AB}$=2$\overrightarrow{AC}$,则点C的坐标为(3,-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,则当$|{\overrightarrow a-t\overrightarrow b}|$取最小值时,实数t=1.

查看答案和解析>>

同步练习册答案