如图,在四棱锥中,底面为菱形,,为的中点。
(1)若,求证:平面;
(2)点在线段上,,试确定的值,使;
(1)证明详见解析;(2)
【解析】
试题分析:(1)由已知条件可证AD⊥BQ,AD⊥PQ,根据平面与平面垂直的判定定理即可求证平面PQB⊥平面PAD.
(2)连结AC交BQ于N,由AQ∥BC,可证△ANQ∽△BNC,即得,由直线与平面平行的性质,可证PA∥MN,即得,所以PM=PC,即t=.
试题解析:(1)连BD,四边形ABCD菱形, ∵AD⊥AB, ∠BAD=60°
△ABD为正三角形, Q为AD中点, ∴AD⊥BQ
∵PA=PD,Q为AD的中点,AD⊥PQ
又BQ∩PQ=Q ∴AD⊥平面PQB, AD平面PAD
∴平面PQB⊥平面PAD;
(2)当时,平面
下面证明,若平面,连交于
由可得,,
平面,平面,平面平面,
即: ;
考点:1.平面与平面垂直的判定;2.直线与平面平行的性质及直线与直线平行的性质.
科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题
((本小题满分12分)
如图,在四棱锥中,底面是矩形.已知
.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题
如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求平面与平面所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题
(本题满分16分)
如图,在四棱锥中,底面是矩形.已知.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题
如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于
(1)求PF:FB的值
(2)求平面与平面所成的锐二面角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题
(本小题满分14分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(Ⅰ)当时,求证平面
(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com