精英家教网 > 高中数学 > 题目详情
13.已知平面ABD与平面CBD相交于直线BD,直线EF与直线GH分别在已知的两个平面内且相交于点M,点M是否在交线BD上?为什么?

分析 利用线面位置关系即可知道分别在两个相交平面的两相交直线的交点必在两平面的交线上.

解答 解:如图所示.
∵EF?平面ABD,GH?平面CBD,EF∩GH=M
∴M∈平面ABD,M∈平面CBD,
又∵平面ABD∩平面CBD=BD,
∴EF∩GH=M必在直线BD上.

点评 正确理解线面位置关系、平面的基本性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在正方体ABCD-A1B1C1D1中,E,F分别是AA1,A1D1的中点,求:
(1)D1B与平面ABCD所成角的余弦值;
(2)EF与平面A1B1C1D1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-2x-3,等差数列{an}中,a1=f(x-1),a${\;}_{2}=-\frac{3}{2}$,a3=f(x)
求:(1)x的值;
(2)通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.建筑师在完成砌墙后,经常用一根掉有铅锤的线,紧靠一平面来测试墙面是否与地面垂直;木工师在安装两相交板面后,经常用一把直三角板,用两直角边紧靠两板面,测试两板面是否垂直,你能分别解释这两个原理吗?
答案:(1)平面与平面垂直的判定定理
     (2)平面与平面垂直的定义.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过点M(3,0)作直线l,交椭圆4x2+y2=16于A、B两点,若AO⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的两焦点F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项.
(1)求此椭圆C的方程;
(2)已知直线l:y=kx+2,直线l与椭圆C相交于A、B两点,若线段AB的中点横坐标为1,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某养鸡场流行一种传染病,鸡的感染率为10%,现对10000只鸡进行抽血化验,以期查出所有病鸡,有3种方案:①逐只化验;②按40只鸡一组分组,并把同组的40只鸡抽到的血混合在一起化验,若发现有问题,再分别对该组40只鸡逐只化验;③将②中的40只一组改为4只一组再做.问:哪种方案化验次数的期望值较小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,其一个顶点时抛物线x2=-4$\sqrt{3}$y的焦点.求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin2($\frac{π}{4}$+x)+$\sqrt{3}$cos2x-1.
(1)求函数f(x)的单调增区间;
(2)若f($\frac{α}{2}$)=$\frac{8}{5}$,求cos(2α-$\frac{π}{3}$)的值.

查看答案和解析>>

同步练习册答案