精英家教网 > 高中数学 > 题目详情
已知A={-1,1},B={x|x2-2ax+b=0},若B≠∅,且A∪B=A,求a、b的值.
分析:根据A∪B=A,可得B⊆A,利用B≠∅,且A={-1,1},可知B={1},{-1},{-1,1},结合B={x|x2-2ax+b=0},即可求得a、b的值.
解答:解:∵A∪B=A,∴B⊆A
∵B≠∅,且A={-1,1},
∴B={1},{-1},{-1,1}
①B={1},则(x-1)2=0,∴x2-2x+1=0,∴-2a=-2,b=1,∴a=1,b=1
②B={-1}},则(x+1)2=0,∴x2+2x+1=0,∴-2a=2,b=1,∴a=-1,b=1
③B={-1,1},则(x-1)(x+1)=0,∴x2-1=0,∴-2a=0,b=-1,∴a=0,b=-1
a=1
b=1
a=-1
b=1
a=0
b=-1
点评:本题考查集合关系中的参数取值问题,解题的关键是根据集合的运算,确定集合之间的关系,从而确定集合B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1,0),
b
=(-1,0,2)
,若向量k
a
+
b
ka
-2
b
互相垂直,则k的值为
2或-
5
2
2或-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,1),
AB
=(3,2)
,则B点坐标为
(4,3)
(4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,命题p:函数y=ax在R上单调递减,q:设函数y=
2x-2a(x≥2a)
2a(x<2a)
,函数y>1恒成立,若p和q只有一个为真命题,则a的取值范围
0<a≤
1
2
或a≥1
0<a≤
1
2
或a≥1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案