精英家教网 > 高中数学 > 题目详情
设关于x的方程sinx+
3
cosx+a=0在(0,2π)内有相异二解α、β.
(1)求α的取值范围.(2)求tan(α+β)的值.
分析:(Ⅰ)通过两角和公式对方程进行化简,因有相异二解推断出sin(x+
π
3
)不等于sin
π
3
和±1,进而推断|-
a
2
|<1,求出a的取值范围.
(Ⅱ)把方程的相异解α、β分别代入方程,得到的两个方程相减,求得tan
α+β
2
的值,再用二倍角公式求出tan(α+β)的值.
解答:解:(Ⅰ)∵sinx+
3
cosx=2(
1
2
sinx+
3
2
cosx)=2sin(x+
π
3
),
∴方程化为sin(x+
π
3
)=-
a
2

∵方程sinx+
3
cosx+a=0在(0,2π)内有相异二解,
∴sin(x+
π
3
)≠sin
π
3
=
3
2

又sin(x+
π
3
)≠±1(∵当等于
3
2
和±1时仅有一解),
∴|-
a
2
|<1.且-
a
2
3
2
.即|a|<2且a≠-
3

∴a的取值范围是(-2,-
3
)∪(-
3
,2).
(Ⅱ)∵α、β是方程的相异解,
∴sinα+
3
cosα+a=0①.
sinβ+
3
cosβ+a=0②.
①-②得(sinα-sinβ)+
3
(cosα-cosβ)=0.
∴2sin
α-β
2
cos
α+β
2
-2
3
sin
α+β
2
sin
α-β
2
=0,又sin
α+β
2
≠0,
∴tan
α+β
2
=
3
3

∴tan(α+β)=
2tan
α+β
2
1-tan2
α+β
2
=
3
点评:本题主要考查三角函数中的两角和公式.解题的关键既要熟练掌握公式,又要灵活利用特殊角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1)
,向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1

(1)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C为△ABC的内角,且A,B,C依次成等差数列,试求|
n
+
p
|的取值范围.
(2)若A、B、C为△ABC的内角,且A,B,C依次成等差数列,A≤B≤C,设f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值为5-2
2
,关于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相异实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修四1.6三角函数模型的简单应用练习卷(解析版) 题型:解答题

设关于x的方程sin内有两个不同根αβ,求αβ的值及k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(1,1)
,向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1

(1)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C为△ABC的内角,且A,B,C依次成等差数列,试求|
n
+
p
|的取值范围.
(2)若A、B、C为△ABC的内角,且A,B,C依次成等差数列,A≤B≤C,设f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值为5-2
2
,关于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相异实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x 2 2 x sin θ ( 2 cos 2 θ + 3 ) = 0,其中θ∈[ 0,],则该方程实根的最大值为           ,实根的最小值为           

查看答案和解析>>

同步练习册答案