ÒÑÖªÏòÁ¿
m
=(1£¬1)
£¬ÏòÁ¿
n
ÓëÏòÁ¿
m
¼Ð½ÇΪ
3
4
¦Ð
£¬ÇÒ
m
n
=-1
£®
£¨1£©ÈôÏòÁ¿
n
ÓëÏòÁ¿
q
=£¨1£¬0£©µÄ¼Ð½ÇΪ
¦Ð
2
£¬ÏòÁ¿
p
=(cosA£¬2cos2
C
2
)
£¬ÆäÖÐA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬ÊÔÇó|
n
+
p
|µÄÈ¡Öµ·¶Î§£®
£¨2£©ÈôA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬Éèf£¨A£©=sin2A-2£¨sinA+cosA£©+a2£¬f£¨A£©µÄ×î´óֵΪ5-2
2
£¬¹ØÓÚxµÄ·½³Ìsin(ax+
¦Ð
3
)=
m
2
(a£¾0)
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù£¬ÇómµÄÈ¡Öµ·¶Î§£®
·ÖÎö£ºÓÉÌâÒâÏÈÇó³öÏòÁ¿
n
µÄ×ø±êÂú×ãÓÐx2+y2=1
£¨1£©ÓÉÏòÁ¿
n
ÓëÏòÁ¿
q
=£¨1£¬0£©µÄ¼Ð½ÇΪ
¦Ð
2
£¬¹ÊÓÐ
n
q
=0£¬Óɴ˽â³öÏòÁ¿
n
µÄ×ø±ê£¬´úÈë|
n
+
p
|2£¬ÓÃÏà¹Ø¹«Ê½ÇóÆ䷶Χ£¬½ø¶øÇó³ö|
n
+
p
|¡Ê[
2
2
£¬
5
2
£©
£¨2£©ÏȽâ³öB=
¦Ð
3
£¬È·¶¨³öAµÄ·¶Î§£¬ÔÙ¶Ôf£¨A£©Óû»Ôª·¨±äÐΣ¬Çó³öÆä×îÖµµÄ±í´ïʽ£¬Åжϲ¢Çó³öÆä×î´óÖµÊÇ1-2
2
+a2£¬ÓÖÒÑÖªf£¨A£©µÄ×î´óֵΪ5-2
2
£¬ÁîÁ½ÕßÏàµÈ½â³ö²ÎÊýaµÄÖµ£¬ÔÙÓÉsin(2x+
¦Ð
3
)=
m
2
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù£¬ÒÀ¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö²ÎÊýmÂú×ãµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©Áî
n
=£¨x£¬y£©£¬ÔòÓÐcos
3
4
¦Ð
=
m
n
|m
|•|
n|
=-
2
2

ÓÉ
m
n
=-1
µÃ|
m
|•|
n
|=
2
£¬ÓÖÏòÁ¿
m
=(1£¬1)
£¬¹ÊÆäģΪ
2
£¬
ÔòÏòÁ¿
n
ÈËģΪ1£®ÔòÓÐx2+y2=1
ÏòÁ¿
n
ÓëÏòÁ¿
q
=£¨1£¬0£©µÄ¼Ð½ÇΪ
¦Ð
2
£¬¹ÊÓÐ
n
q
=0£¬¼´x=0£¬¹Êy=¡À1
ÓÖ
m
n
=-1
¹Êy=-1£¬Ôò
n
=£¨0£¬-1£©£¬
 ÏòÁ¿
p
=(cosA£¬2cos2
C
2
)
£¬¼´
p
=(cosA£¬1+cosC)

ÓÖA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁР¹ÊB=
¦Ð
3

|
n
+
p
|2=cos2A+cos2C=cos2A+cos2£¨
2¦Ð
3
-A£©=1+
1
2
cos£¨2A+
¦Ð
3
£©
ÓÉA¡Ê£¨0£¬
2¦Ð
3
£©£¬µÃ2A+
¦Ð
3
¡Ê£¨
¦Ð
3
£¬
5¦Ð
3
£©µÃcos£¨2A+
¦Ð
3
£©¡Ê[-1£¬
1
2
£©
|
n
+
p
|2¡Ê[
1
2
£¬
5
4
£©¹Ê|
n
+
p
|¡Ê[
2
2
£¬
5
2
£©
£¨2£©¡ßA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬¡àB=
¦Ð
3

¡àf£¨A£©=sin2A-2£¨sinA+cosA£©+a2=2sinAcosA-2£¨sinA+cosA£©+a2 
Áît=sinA+cosA=
2
sin£¨A+
¦Ð
4
£©£¬Ôò2sinAcosA=t2-1
ÓÉÓÚA¡Ê£¨0£¬
¦Ð
3
]£¬A+
¦Ð
4
¡Ê£¨
¦Ð
4
£¬
7¦Ð
12
]£¬¹Êt=
2
sin£¨A+
¦Ð
4
£©¡Ê£¨1£¬
2
]
¹ÊÓÐf£¨A£©=t2-1-2t+a2=t2-2t+a2-1£¬t¡Ê£¨1£¬
2
]
µ±t=
2
ʱȡµ½×î´óֵΪ1-2
2
+a2
ÓÖf£¨A£©µÄ×î´óֵΪ5-2
2
£¬¹Ê1-2
2
+a2=5-2
2

¹Êa2=4£¬ÓÖa£¾0£¬¹Êa=2
ÓÖ¹ØÓڵķ½³Ìsin(ax+
¦Ð
3
)=
m
2
(a£¾0)
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
¼´·½³Ìsin(2x+
¦Ð
3
)=
m
2
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
ÒòΪx¡Ê[0£¬
¦Ð
2
]
£¬¹Êy=sin(2x+
¦Ð
3
)
ÔÚ£¨0£¬
¦Ð
12
£©ÉÏÊÇÔöº¯Êý£¬ÔÚ£¨
¦Ð
12
£¬
¦Ð
2
£©ÉÏÊǼõº¯Êý
·½³Ìsin(2x+
¦Ð
3
)=
m
2
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
¹Ê
m
2
¡Ê[
3
2
£¬1£©£¬
¹Êm¡Ê[
3
£¬2£©£®
µãÆÀ£º±¾Ì⿼µãÊÇÈý½Çº¯ÊýµÄ×îÖµ£¬×ÛºÏÀûÓöþ´Îº¯ÊýµÄ×îÖµ£¬ÏòÁ¿µÄÔËË㣬Èý½Çº¯ÊýµÄºãµÈ±äÐΣ¬Èý½Çº¯ÊýµÄ×îÖµ£¬¼°Èý½Çº¯ÊýµÄͼÏó£¬Éæ¼°µ½ÖªÊ¶¹ã¶È¸ß£¬×ÛºÏÐÔÇ¿£¬×öÌâʱҪÓÐÄÍÐĵضÔÌâÄ¿ÖÐËù¸øµÄÿһ¸öÌõ¼þϸÐÄ¡¢ÑϽ÷ת»¯£¬¶Ôÿһ¸öÌõ¼þËùÔ̺¬µÄ±¾ÖʽøÐÐÍÚ¾ò£¬Öð²½Ïò½áÂÛ¿¿½ü£¬Èç±¾ÌâÖеڶþСÌ⣬Öð²ãÍƽø±È½ÏÃ÷ÏÔ£¬´ðÌâ¹ý³ÌÖÐ×ÐϸÌå»á´Ë˼άÂöÂ磮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=(
3
sin
x
4
£¬1)£¬
n
=(cos
x
4
£¬cos2
x
4
)
£¬¼Çf(x)=
m
n
£¬
£¨1£©Çóf£¨x£©µÄÖµÓòºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒÂú×㣨2a-c£©cosB=bcosC£¬Èôf(A)=
1+
3
2
£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=(¦Ë+1£¬1)£¬
n
=(¦Ë+2£¬2)
£¬Èô£¨
m
+
n
)¡Í(
m
-
n
)
¡Í(
m
-
n
)
£¬Ôò¦Ë=
-3
-3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÒÑÖªÏòÁ¿
m
=(1£¬1)
£¬ÏòÁ¿
n
ÓëÏòÁ¿
m
µÄ¼Ð½ÇΪ
3¦Ð
4
£¬ÇÒ
m
n
=-1
£®
£¨1£©ÇóÏòÁ¿
n
£»
£¨2£©ÈôÏòÁ¿
n
Óë
q
=(1£¬0)
¹²Ïߣ¬ÏòÁ¿
p
=(2cos2
C
2
£¬cosA)
£¬ÆäÖÐA¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA¡¢B¡¢CÒÀ´Î³ÉµÈ²îÊýÁУ¬Çó|
n
+
p
|
µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=(1£¬1)
£¬ÏòÁ¿
n
ÓëÏòÁ¿
m
µÄ¼Ð½ÇΪ
3¦Ð
4
£¬ÇÒ
n
m
=-1

£¨1£©ÇóÏòÁ¿
n
µÄ×ø±ê£»
£¨2£©ÈôÏòÁ¿
n
ÓëÏòÁ¿
i
µÄ¼Ð½ÇΪ
¦Ð
2
£¬ÏòÁ¿
p
=(x2£¬a2)£¬
q
=(a2£¬x)
£¬Çó¹ØÓÚxµÄ²»µÈʽ(
p
+
n
)•
q
£¼1
µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸