(本小题满分14分)
设函数
(
),其中
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求函数
的极大值和极小值;
(Ⅲ)当
时,是否存在函数
图像上两点以及函数
图像上两点,使得以这四点为顶点的四边形ABCD满足如下条件:1四边形ABCD是平行四边形;2
轴;3
。若存在,指出四边形ABCD的个数;若不存在,说明理由。
(Ⅰ)当
时,
,得
,且
,
.
所以,曲线
在点
处的切线方程是
,
整理得
.
(Ⅱ)解:
,
.
令
,解得
或
.
由于
,以下分两种情况讨论.
(1)若
,当
变化时,
的正负如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因此,函数
在
处取得极小值
,且
;
函数
在
处取得极大值
,且
.
(2)若
,当
变化时,
的正负如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因此,函数
在
处取得极小值
,且
;
函数
在
处取得极大值
,且
.
(Ⅲ)若存在满足题意的四边形ABCD,则方程
至少有两个相异实根,且每个实根对应一条垂直于x轴且与
图像均相交的的线段,这些线段长度均相等。
,![]()
![]()
1
时,
,令
,![]()
令
,得
或![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由表格知,
为
的极大值,
为
的极大值,而
,故
的图像与x轴有且只有一个交点,
有且只有一个零点。
2
时,
,令
,
,
由1知
为
的极大值,
为
的极大值,而
,故
的图像与x轴有三个交点,
有三个零点。
由12知,方程
有四个不同的实根,从小到大依次记为
,这四个根对应的四条线段中的每两条对应一个平行四边形ABCD,共有
6个,所以满足题意的平行四边形ABCD有6个。
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com