数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an=+++…+,求数列{bn}的通项公式;
(3)令cn=(n∈N*),求数列{cn}的前n项和Tn.
[解析] (1)当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,知a1=2满足该式
∴数列{an}的通项公式为an=2n.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2分
(2)an=+++…+(n≥1)①
∴an+1=+++…++②
②-①得,=an+1-an=2,bn+1=2(3n+1+1),
故bn=2(3n+1)(n∈N*). ………………………………………………..6分
(3)cn==n(3n+1)=n·3n+n,
∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)
令Hn=1×3+2×32+3×33+…+n×3n,①
则3Hn=1×32+2×33+3×34+…+n×3n+1②
①-②得,-2Hn=3+32+33+…+3n-n×3n+1=-n×3n+1
∴Hn=。
∴数列{cn}的前n项和Tn=+. 。。。。。。。。。。。。。。。。。。。。 12分
科目:高中数学 来源: 题型:
Tn |
ak |
SnTn |
Tn(1)+Tn(2)+…+Tn(n) |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
pn-q |
p |
(p-1)(p-q) |
1 |
pn |
1 |
(2n-1)(2n+1-1) |
2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
1 |
3 |
2 |
3 |
1 |
4 |
2 |
4 |
3 |
4 |
1 |
5 |
2 |
5 |
3 |
5 |
4 |
5 |
1 |
n |
2 |
n |
n-1 |
n |
3 |
8 |
n2+n |
4 |
5 |
7 |
查看答案和解析>>
科目:高中数学 来源: 题型:
6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com