精英家教网 > 高中数学 > 题目详情
已知F1,F2为双曲线左,右焦点,以双曲线右支上任意一点P为圆心,以|PF1|为半径的圆与以F2为圆心,
1
2
|F1F2|为半径的圆内切,则双曲线两条渐近线的夹角是(  )
A.
π
4
B.
π
2
C.
π
3
D.
3
由题意可得|PF1|-
1
2
|F1F2|=|PF2|,即|PF1|-|PF2|=c,再由双曲线的定义可得
2a=c,∴
b
a
=
c2-a2
a
=
3
,故两渐近线的斜率分别为
3
 和-
3
,倾斜角分别为
π
3
3

故两条渐近线的夹角是
3
π
3
=
π
3

故选 C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省襄樊四中高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省榆林市神木中学高三(上)数学寒假作业1(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(文科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案