精英家教网 > 高中数学 > 题目详情
对于n∈N*,将n表示为n=ak×2k+ak-1×2k-1+…+a121+a0×20,当i=k时,ai=1;当0≤i≤k-1时,ai为0或1.定义bn如下:在n的上述表示中,当a0,a1,a2,…ak中等于1的个数为奇数时,bn=1;否则bn=0.则b3+b4+b5+b6=
 
分析:由题设定义可知,3=1×20+1×2,4=1×22,5=1×22+1×20,6=1×22+1×2,可得b3=0,b4=1,b5=0,b6=0,从而可得结论.
解答:解:由题设定义可知,3=1×20+1×2,4=1×22,5=1×22+1×20,6=1×22+1×2,
∴b3=0,b4=1,b5=0,b6=0
∴b3+b4+b5+b6=1.
故答案为:1.
点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网将数列{an}中的所有项按第一行排3项,以下每一行比上一行多一项的规则排成如下数表:
记表中的第一列数a1,a4,a8,…,构成数列{bn}.
(Ⅰ)设b8=am,求m的值;
(Ⅱ)若b1=1,对于任何n∈N*,都有bn>0,且(n+1)bn+12-nbn2+bn+1bn=0.求数列{bn}的通项公式;
(Ⅲ)对于(Ⅱ)中的数列{bn},若上表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列,且a66=
25
,求上表中第k(k∈N*)行所有项的和s(k).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网将数列{an}  中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}  中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a66=
2
5
.请解答以下问题:
(1)求数列{bn}  的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
1000
 , 
1
100
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.
(1)当n=2时,试写出排成的各个数表中所有可能的不同“特征值”;
(2)若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
请分别写出n=3,4,5时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);
(3)对于由正整数1,2,3,4,…,n2排成的n行n列的任意数表,若某行(或列)中,存在两个数属于集合{n2-n+1,n2-n+2,…,n2},记其“特征值”为λ,求证:λ≤
n+1
n

查看答案和解析>>

科目:高中数学 来源:上海模拟题 题型:解答题

将数列{an}中的所有项按第一行排三项,以下每一行比上一行多一项的规则排成如下数表:
记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
(1)在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
(2)表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
(3),请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式上有解,求正整数k的取值范围。

查看答案和解析>>

同步练习册答案