½«ÊýÁÐ{an}ÖеÄËùÓÐÏî°´µÚÒ»ÅÅÈýÏÒÔÏÂÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£º¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a4£¬a8£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬ÒÑÖª£º
¢ÙÔÚÊýÁÐ{bn}ÖУ¬b1=1£¬¶ÔÓÚÈκÎn¡ÊN*£¬¶¼ÓУ¨n+1£©bn+1-nbn=0£»
¢Ú±íÖÐÿһÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³É¹«±ÈΪq£¨q£¾0£©µÄµÈ±ÈÊýÁУ»
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12
¡­

¢Ûa66=
2
5
£®Çë½â´ðÒÔÏÂÎÊÌ⣺
£¨¢ñ£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÉϱíÖеÚk£¨k¡ÊN*£©ÐÐËùÓÐÏîµÄºÍS£¨k£©£»
£¨¢ó£©Èô¹ØÓÚxµÄ²»µÈʽS(k)+
1
k
£¾
1-x2
x
ÔÚx¡Ê[
1
200
 £¬ 
1
20
]
ÉÏÓн⣬ÇóÕýÕûÊýkµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©½«nbn¿´×÷ÕûÌ壬ÓÉ£¨n+1£©bn+1=nbn=0¿ÉµÃÊýÁÐ{nbn}Êdz£ÊýÁУ¬ÏîֵΪ1¡Áb1=1£¬¡ànbn=1£¬¡àbn=
1
n

£¨¢ò£©ÓÉa66=
2
5
£¬a66ÔÚ±íÖеÚÊ®ÐеÚÈýÁУ¬¼´ÆäÔÚÒÔb10ΪÊ×ÏîµÄ£¬¹«±ÈΪqµÄÊýÁеĵÚÈýÏ°´ÕյȱÈÊýÁÐͨÏʽÁгö·½³Ì ÔÙ½â³öq£¬±ã¿ÉÇó¸÷ÐÐÊý¾ÝÖ®ºÍ£®
£¨¢ó£©ÒÀÌâÒ⣬ÕýÕûÊýkµÄȡֵʹS(k)+
1
k
µÄ×îСֵ´óÓÚ
1-x2
x
£¬ x¡Ê[
1
200
£¬
1
20
]
µÄ×îСֵ¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©ÓÉ£¨n+1£©bn+1-nbn=0£¬µÃÊýÁÐ{nbn}Ϊ³£ÊýÁУ®¹Ênbn=1•b1=1£¬ËùÒÔbn=
1
n
£®¡¡¡¡¡¡   
£¨¢ò£©¡ß3+4+¡­+11=63£¬
¡à±íÖеÚÒ»ÐÐÖÁµÚ¾ÅÐй²º¬ÓÐ{an}µÄÇ°63Ïa66ÔÚ±íÖеÚÊ®ÐеÚÈýÁУ®¡¡¡¡¡¡     
¹Êa66=b10•q2£¬¶øb10=
1
10
£¬¡àq=2£® ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡          ¡¡
¹ÊS(k)=
bk( 1-qk+2)
1-q
=
1
k
2k+2-1 )
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡  ¡¡       
£¨¢ó£©f(x)=
1-x2
x
=
1
x
-x
ÔÚx¡Ê[
1
200
 £¬ 
1
20
]
Éϵ¥µ÷µÝ¼õ£¬
¹Êf£¨x£©µÄ×îСֵÊÇf(
1
20
)=20-
1
20
£®                                        
Èô¹ØÓÚxµÄ²»µÈʽS(k)+
1
k
£¾
1-x2
x
ÔÚx¡Ê[
1
200
 £¬ 
1
20
]
ÉÏÓн⣬
Éèm(k)=S(k)+
1
k
=
1
k
2k+2
£¬Ôò±ØÐëm(k)£¾20-
1
20
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ 
¡ßm(k+1)-m(k)=
1
k+1
2k+3-
1
k
2k+2=
2k+2( k-1 )
k ( k+1 )
¡Ý0
£¨»ò
m(k+1)
m(k)
=
2k
k+1
¡Ý1
£©
¡àm£¨1£©=m£¨2£©=8£¬º¯Êým£¨k£©µ±k¡Ý2ÇÒk¡ÊN*ʱµ¥µ÷µÝÔö£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¶øm£¨4£©=16£¬m(5)=
128
5
£¾20-
1
20
£¬ËùÒÔkµÄÈ¡Öµ·¶Î§ÊÇ´óÓÚ4µÄÒ»ÇÐÕýÕûÊý£®
µãÆÀ£º±¾Ì⿼²éÊýÁеĸÅÄµÈ±ÈÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ£¬º¯ÊýµÄµ¥µ÷ÐÔ¼°×îÖµµÈ֪ʶ£¬¿¼²éÔĶÁ£¬·ÖÎö½â¾öÎÊÌ⣬¼ÆËãµÈÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã
2bn
bnSn-
S
2
n
=1(n¡Ý2)
£®
£¨1£©ÇóÖ¤ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±a81=-
4
91
ʱ£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º
¾«Ó¢¼Ò½ÌÍø
¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©Áîcn=2+ban+b•2an-1£¨bΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£®¼Ç±íÖеÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£®SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã2bn=bnSn-Sn2£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{
1
Sn
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Í¼ÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±a81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÊýµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ãÊýѧ¹«Ê½£®
£¨1£©ÇóÖ¤ÊýÁÐÊýѧ¹«Ê½³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±Êýѧ¹«Ê½Ê±£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡»´°²ÊкéÔóÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨3£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º

¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÁbΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸