精英家教网 > 高中数学 > 题目详情
(2012•邯郸一模)选修4-4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合.直线l的参数方程为:
x=-1+
3
2
t
y=
1
2
t       
(t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(Ⅰ)写出C的直角坐标方程,并指出C是什么曲线;
(Ⅱ)设直线l与曲线C相交于P、Q两点,求|PQ|值.
分析:(Ⅰ)由ρ=4cosθ可得ρ2=4ρcosθ,故曲线C的直角坐标方程为(x-2)2+y2=4,它是以(2,0)为圆心,半径为2的圆.
(Ⅱ)把参数方程代入x2+y2=4x整理得t2-3
3
t+5=0
,利用根与系数的关系求得t1+t2=3
3
t1t2=5
,根据 |PQ|=|t1-t2|=
(t1+t2)2-4t1t2
求得结果.
解答:解:(Ⅰ)∵ρ=4cosθ,∴ρ2=4ρcosθ,(2分)
由ρ2=x2+y2,ρcosθ=x得:x2+y2=4x,
所以曲线C的直角坐标方程为(x-2)2+y2=4,…(4分)
它是以(2,0)为圆心,半径为2的圆.…(5分)
(Ⅱ)把
x=-1+
3
2
t
y=
1
2
t       
代入x2+y2=4x整理得t2-3
3
t+5=0
,…(7分)
设其两根分别为t1、t2,则t1+t2=3
3
t1t2=5
,…(8分)
|PQ|=|t1-t2|=
(t1+t2)2-4t1t2
=
7
.…(10分)
点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,参数的几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•邯郸一模)阅读如图的程序框图.若输入n=6,则输出k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2

(Ⅰ)求证:平面EAB⊥平面ABCD;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=
1
3
a32
,S7=56.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{
1
bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)给出以下命题:①?x∈R,sinx+cosx>1②?x∈R,x2-x+1>0③“x>1”是“|x|>1”的充分不必要条件,其中正确命题的个数是(  )

查看答案和解析>>

同步练习册答案