【题目】已知( ﹣ )5的常数项为15,则函数f(x)=log (x+1)﹣ 在区间[﹣ ,2]上的值域为 .
【答案】[0,10]
【解析】解:由题意( ﹣ )5的常数项为15,即 中 ,解得:r=1, 则 ,可得a=﹣3.
那么可得函数f(x)=log (x+1)+ ,
∵在区间[﹣ ,2]上y=log (x+1)和y= 都是减函数,
∴函数f(x)在区间[﹣ ,2]上是减函数
当x= 时,函数f(x)取得最大值为10.
当x=2时,函数f(x)取得最小值为0.
∴函数f(x)=log (x+1)+ 在区间[﹣ ,2]上的值域为[0,10]
所以答案是:[0,10]
【考点精析】解答此题的关键在于理解函数的值域的相关知识,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.
科目:高中数学 来源: 题型:
【题目】设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1 , C2之间的距离,记作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,则d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,则d(C3 , C4)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为( )
A.27π
B.48π
C.64π
D.81π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ ﹣1,a∈R.
(1)若关于x的不等式f(x)≤ x﹣1在[1,+∞)上恒成立,求a的取值范围;
(2)设函数g(x)= ,若g(x)在[1,e2]上存在极值,求a的取值范围,并判断极值的正负.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若函数g(x)=f(x)﹣t有三个不同的零点x1 , x2 , x3 , 且x1<x2<x3 , 则﹣ + + 的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为( )
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为 =0.7x+0.35,则下列结论错误的是( )
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A.线性回归直线一定过点(4.5,3.5)
B.产品的生产能耗与产量呈正相关
C.t的取值必定是3.15
D.A产品每多生产1吨,则相应的生产能耗约增加0.7吨
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com