精英家教网 > 高中数学 > 题目详情
若直线l的倾斜角为arccos(-
3
5
),则此直线的一个模为1的法向量为
 
考点:直线的倾斜角
专题:直线与圆
分析:根据直线的倾斜角,求出直线的斜率,以及直线的方向向量,根据法向量和方向向量的垂直关系建立方程即可得到结论.
解答: 解:∵直线l的倾斜角θ=arccos(-
3
5
),
∴cosθ=-
3
5
,即直线的斜率k<0,
则tanθ=-
4
3
,则直线的一个方向向量
a
=(1,-
4
3
)

设模为1的法向量为
b
=(cosα,sinα)

则由
a
b
=0
得cosα-
4
3
sinα=0

即tanα=
3
4
,不妨设sinα=
3
5
,则cosα=
4
5

∴满足条件的法向量为(
4
5
3
5
),
故答案为:(
4
5
3
5
点评:本题主要考查向量的基本运算,根据法向量和方向向量之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c.角A为锐角,且满足3b=5asinB.
(1)求sin2A+cos2
B+C
2
的值;
(2)若a=
2
,△ABC的面积为
3
2
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC∥平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)若直线y=ax的图象恒在函数f(x)图象的上方,求a的取值范围;
(Ⅲ)若存在-
1
a
<x1<0,x2>0,使得f(x1)=f(x2)=0,求证:x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知点A(3,-1)和点B(10,5),∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,
3
),B(-1,3
3
),则直线AB的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知曲线C1
x=cosθ
y=sinθ
(θ为参数),将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的
3
、2倍后得到曲线C2的直角坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P为正方体ABCD-A1B1C1D1对角线BD1上的一点,且BP=λBD1(λ∈(0,1).下面结论:
①AD1⊥C1P;
②若BD1⊥平面PAC,则λ=
1
3

③若△PAC为钝角三角形,则λ∈(0,
1
2
);
④若λ∈(
2
3
,1),则△PAC为锐角三角形.
其中正确的结论为
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,若该程序运行后输出的结果不大于37,则输入的整数i的最大值为(  )
A、3B、4C、5D、6

查看答案和解析>>

同步练习册答案