精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=$\left\{\begin{array}{l}1-{x^2},x≤1\\{x^2}+x-2,x>1\end{array}$,则f(-1)=0.

分析 利用函数性质直接求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}1-{x^2},x≤1\\{x^2}+x-2,x>1\end{array}$,
∴f(-1)=1-(-1)2=1-1=0.
故答案为:0.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知 f(x)是奇函数,当 x>0 时,f(x)=x3-x,则 f(-2)=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)>1,则$\frac{b+1}{a+1}$的取值范围是(  )
A.($\frac{1}{5}$,$\frac{1}{3}$)B.(-∞,3)C.(-∞,$\frac{1}{3}$)D.($\frac{1}{3}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图正方形ABCD中,O为中心,PO⊥面ABCD,E是PC中点,求证:
(1)PA∥平面BDE;
(2)面PAC⊥面BDE.
(3)若PA=PB=PC=PD=AB,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow{α}$=(1,cos2θ-sin2θ),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=($4cos(\frac{π}{2}-θ)$,1),$\overrightarrow{d}$=($\frac{1}{2}cos(\frac{3π}{2}+θ),1$)其中$θ∈(0,\frac{π}{4})$.
(1)求$\overrightarrow{α}•\overrightarrow{b}-\overrightarrow{c}•\overrightarrow{d}$的取值范围.
(2)若函数f(x)=|x-1|,比较f($\overrightarrow{α}•\overrightarrow{b}$)与f($\overrightarrow{c}•\overrightarrow{d}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=2sin(2x+$\frac{π}{6}$),将f(x)图象上每个点的横坐标缩短为原来的一半之后成为函数y=g(x),则g(x)的图象的一条对称轴方程为(  )
A.x=$\frac{π}{24}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{2}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|1≤x<5},B={x|-a<x≤a+3}
(1)若a=1,U=R,求∁UA∩B;
(2)若B∩A=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到240在第一营区,从241到496为第二个营区,从497到600为第三营区,则第二营区被抽中的人数为22.

查看答案和解析>>

同步练习册答案