在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,
,
、
分别为
、
的中点.
![]()
(1)求二面角
的余弦值;
(2)求点
到平面
的距离.
(1)
;(2)
.
【解析】
试题分析:(1)本题中取
中点
,将会出现许多垂直,这正是我们解题时需要的结果,由于
,则
,由于平面
平面
,则![]()
平面
,
是正三角形,则
,有了这些垂直后,就可以建立空间直角坐标系(以
为原点,
分别为
轴),写出相应点的坐标,计算所需向量的坐标,设
分别是二面角的两个面的法向量,则二面角的余弦值,就等于
(或者其相反数,这要通过图形观察确定);(2)设平面
的法向量是
,则点
以平面
的距离为
.
试题解析:⑴取
中点
,连结
、
.∵
,
,
∴
,
.∵平面
平面
,
平面
平面
,∴
平面
,∴
.
如图所示建立空间直角坐标系
,则
,
,
,
∴
.
![]()
∴
.
设
为平面
的一个法向量,
则
,
取
,则
,∴
,
又
为平面
的一个法向量,
,即二面角
的余弦值为
.
(2)由⑴得
,又
为平面
的一个法向量,
,
∴点
到平面
的距离
.
考点:(1)二面角;(2)点到平面的距离.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 2S |
| l |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2S |
| l |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| 2 |
| ||
| 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com