精英家教网 > 高中数学 > 题目详情
如图1-2-1,在单位圆中,角α的正弦线、正切线的写法完全正确的是(    )

图1-2-1

A.正弦线MP,正切线A′T′

B.正弦线PM,正切线AT

C.正弦线MP,正切线AT

D.正弦线PM,正切线A′T′

解析:由条件可知角α的终边在第三象限,正弦线为MP,正切线为AT.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )
A、y=x2+1
B、y=|x|+1
C、y=
2x+1,x≥0
x3+1,x<0
D、y=
ex,x≥0
e-x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )

A.yx2+1

B.y=|x|+1

C.y

D.y

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学一轮课时训练:2.3 平面向量的基本定理及坐标表示(新人教必修4)(解析版) 题型:解答题

如图,在平行四边形OABP中,过点P的直线与线段OA、OB分别相交于点M、N,若=x=y
(0<x<1).
(1)求y=f(x)的解析式;
(2)令F(x)=+x,判断F(x)的单调性,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源:2011年四川省自贡市高考数学三模试卷(理科)(解析版) 题型:解答题

给出下列5个命题:
①0<a≤是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U>1+a>
⑤函数f(x)=(x≠kπ+),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是   

查看答案和解析>>

同步练习册答案