精英家教网 > 高中数学 > 题目详情

已知数列,,,成等差数列,,,,,成等比数列,则的值为___________________

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}的公比q>1,且a1与a4的一等比中项为4
2
,a2与a3的等差中项为6.
(I)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{an}的前n项和,bn=Sn+3+(-1)n+1an2(n∈N*),请比较bn与bn+1的大小;
(Ⅲ)数列{an}中是否存在三项,按原顺序成等差数列?若存在,则求出这三项;若不存在,则加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,其前n项和为Sn,已知a1+a4=-
7
16
,且对于任意的n∈N+有Sn,Sn+2,Sn+1成等差;
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=n(n∈N+),记Tn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|
,若(n-1)2≤m(Tn-n-1)对于n≥2恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,其前n项和为Sn,已知a1+a4=-
7
16
,且S1,S3,S2成等差,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=n(n∈N+),记Tn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,若(n-1)2≤m(Tn-n-1)对于n≥2,n∈N+恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:安徽省蚌埠二中2007届第二次月考试卷、数学(文) 题型:044

解答题:

已知数列a的首项a=1,前n项和为s.且对任意正整数n有n,a,s成等差

(1)

求证:数列s+n+2成等比

(2)

求数列a通项a

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

在等差数列{an}中,公差d≠0,a2是a1与a4的等差中项,已知数列a1,a3,…成等比数列,求数列{kn}的通项kn

查看答案和解析>>

同步练习册答案