精英家教网 > 高中数学 > 题目详情
已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(  )
分析:一元二次不等式x2+(m+1)x+m2>0对一切实数x都成立,y=x2+(m+1)x+m2的图象在x轴上方,由此能够求出m的取值范围.
解答:解:∵不等式x2+(m+1)x+m2>0对一切实数x恒成立,
根据二次函数y=x2+(m+1)x+m2的图象的性质,
∴△<0,即(m+1)2-4m2<0,
即(m-1)(m+
1
3
)>0,
解为 m>1或 m<-
1
3

故选A.
点评:本小题考查二次函数的图象和性质,解题时要抓住二次函数与x轴无交点的特点进行求解,考查了二次函数的恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式x2-x-m+1>0.
(1)当m=3时解此不等式;
(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、已知不等式x2+mx+m>0对于任意的x都成立,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-3x+m<0的解集为{x|1<x<n,n∈R},函数f(x)=-x2+ax+4.
(1)求m,n的值;
(2)若y=f(x)在(-∞,1]上递增,解关于x的不等式loga(-nx2+3x+2-m)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式x2-x-m+1>0.
(1)当m=3时解此不等式;
(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案