精英家教网 > 高中数学 > 题目详情

【题目】已知向量,向量垂直,且.

(1)求数列的通项公式;

2)若数列满足,求数列的前项和.

【答案】(1);(2).

【解析】试题分析:(1)向量垂直,得是以为首项,为公比的等比数列,利用等比数列的通项公式可求;(2)由,则,利用错位相减法可求其和.

试题解析:(1)∵向量垂直, ,即

是以1为首项,2为公比的等比数列,.

2

∴由得,

.

【 方法点睛】本题主要考查等比数列通项、平面向量数量积公式以及错位相减法求数列的通项,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017届河北省正定中学高三上学期第三次月考(期中)数学(理)】在平面直角坐标系中,当不是原点时,定义的“伴随点”为;当是原点时,定义的“伴随点”为它自身,平面曲线上所有点的“伴随点”所构成的曲线定义为曲线的“伴随曲线”,现有下列命题:

①若点的“伴随点”是点,则点的“伴随点”是点

②若曲线关于轴对称,则其“伴随曲线” 关于轴对称;

③单位圆的“伴随曲线”是它自身;

④一条直线的“伴随曲线”是一条直线.

其中真命题的个数为(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的普通方程和曲线的一个参数方程;

(2)曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府决定建造一批保障房供给社会,缓解贫困人口的住房问题,计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.

注:每平方米平均综合费用=.

(1) 求k的值;

(2) 问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若恒成立,求的取值范围;

)设,(为自然对数的底数).是否存在常数,使恒成立,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发的一种药,如果成年人按规定的剂量服用,据监测,服药后每毫升中的含药量(微克)与时间(小时)之间近似满足如图所示的曲线.(当时, .

1)写出第一次服药后之间的函数关系式

2)据进一步测定,每毫升血液中含药量不少于微克时,治疗疾病有效,求服药一次后治疗疾病有效时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时,

1求证: ,且当 时,有

2判断 R上的单调性;

3设集合AB,若A∩B,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个顶点分别为,焦点在轴上,离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)点轴上一点,过轴的垂线交椭圆于不同的两点,过的垂线交于点.求的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某DVD光盘销售部每天的房租、人员工资等固定成本为300元,每张DVD光盘的进价是6元,销售单价与日均销售量的关系如表所示:

销售单价(元)

7

8

9

10

11

12

13

日均销售量(张)

480

440

400

360

320

280

240

(1)请根据以上数据作出分析,写出日均销售量P(x)(张)关于销售单价x(元)的函数关系式,并写出其定义域;

(2)问这个销售部销售的DVD光盘销售单价定为多少时才能使日均销售利润最大?最大销售利润是多少?

查看答案和解析>>

同步练习册答案