精英家教网 > 高中数学 > 题目详情

已知函数f(x)=tan(2x-bπ)的图象的一个对称中心为(数学公式),若|b|<数学公式,则f(x)的解析式为


  1. A.
    tan(2x+数学公式
  2. B.
    tan(2x-数学公式
  3. C.
    tan(2x+数学公式)或tan(2x-数学公式
  4. D.
    tan(2x-数学公式)或tan(2x+数学公式
A
分析:根据题中的条件可得tan(-bπ)=0,故有 (-bπ)=kπ,k∈z,再由|b|<求得b的值,即得f(x)的解析式.
解答:由题意可得tan(-bπ)=0,∴(-bπ)=kπ,k∈z,∴2-3b=3k,b=-k,k∈z,
又|b|<,故b=-
故选A.
点评:正切函数的对称性,得到 -bπ=kπ,k∈z,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)=x3+ax2+b的图象在点P(1,f(1))处的切线为3x+y-3=0.
(1)求函数f(x)及单调区间;
(2)求函数在区间[0,t](t>0)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=t(数学公式-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(数学公式)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省东莞市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=t(-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点()处的切线方程为2x+y-2+ln2,求t和y的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

同步练习册答案