精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=x3﹣3ax+3a在区间(0,2)内有极小值,则a的取值范围是(  )
A.a>0
B.a>2
C.0<a<2
D.0<a<4

【答案】D
【解析】对于函数f(x)=x3﹣3ax+3a,求导可得f′(x)=3x2﹣3a,
∵函数f(x)=x3﹣3ax+3a在(0,2)内有极小值,
∴y′=3x2﹣3a=0,则其有一根在(0,2)内,a>0时,3x2﹣3a=0两根为±
若有一根在(0,2)内,则0<<2,即0<a<4.
a=0时,3x2﹣3a=0两根相等,均为0,f(x)在(0,2)内无极小值.
a<0时,3x2﹣3a=0无根,f(x)在(0,2)内无极小值,
综合可得,0<a<4,
故选:D.
【考点精析】根据题目的已知条件,利用函数的极值的相关知识可以得到问题的答案,需要掌握极值反映的是函数在某一点附近的大小情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】宿州市某登山爱好者为了解山高y(百米)与气温x(℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表,由表中数据,得到线性回归方程为y=﹣2x+a,由此估计山高为72(百米)处的气温为(

气温x(℃)

18

13

10

﹣1

山高y(百米)

24

34

38

64


A.﹣10
B.﹣8
C.﹣6
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x3﹣ax2+1在(1,3)内单调递减,则实数a的范围是(
A.[ ,+∞)
B.(﹣∞,3]
C.(3,
D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2cosx在 的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2alnx(a∈R) (Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m>0,n>0, +mn的最小值为t.
(1)求t值
(2)解关于x的不等式|x﹣1|<t+2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足
(Ⅰ)求∠C的大小;
(Ⅱ)求sin2A+sin2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,(e=2.71828)
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)①设g(x)=x+ ,x∈(0,+∞),求g(x)的最小值; ②证明: ≥1﹣x.

查看答案和解析>>

同步练习册答案