精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{1-3x,x≤0}\end{array}\right.$,则f[f(-1)]=3.

分析 由已知条件利用分段函数的性质先求出f(-1)的值,由此能求出f[f(-1)]的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{1-3x,x≤0}\end{array}\right.$,
∴f(-1)=-1+2=1,
f[f(-1)]=f(1)=1+2=3.
故答案为:3.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-x+2a-1(a>0).
(1)当a=1时,求f(x)在区间[1,2]上的值域;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数h(x)=($\frac{1}{2}$)x+log2$\frac{1}{x+1}$,若对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若x<1,求函数y=x+$\frac{1}{x-1}$的最大值,并求相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数y=4x3-3x2-6x+5,则y′=12x2-6x-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)满足f(x-3)=f(-x-3),且该函数的图象与y轴交于点(0,-1),在x轴上截得的线段长为2$\sqrt{6}$.
(1)确定该二次函数的解析式;
(2)当x∈[-6,k]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\sqrt{5-x}$+lg(2x-1)的定义域是(  )
A.($\frac{1}{2}$,5)B.($\frac{1}{2}$,5]C.(-∞,5]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=2ax2+(2a-4)x+3是偶函数,则a等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin380°cos10°-cos160°cos80°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则r=$\frac{2S}{a+b+c}$;设四面体S-ABC的四个面的面积分别为Si(i=1,2,3,4),内切球的半径为r,体积为V,请类比三角形的上述结论,写出四面体中的结论r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$.

查看答案和解析>>

同步练习册答案