精英家教网 > 高中数学 > 题目详情
2.y=x2+x+1,x∈[-1,3]的值域为[$\frac{3}{4}$,13].

分析 对该二次函数进行配方,根据配方的式子即可看出该函数的最大、最小值,从而得出该函数的值域.

解答 解:$y={x}^{2}+x+1=(x+\frac{1}{2})^{2}+\frac{3}{4}$;
∴x=3时该函数取最大值13,x=$-\frac{1}{2}$时,取最小值$\frac{3}{4}$;
∴该函数的值域为[$\frac{3}{4}$,13].
故答案为:$[\frac{3}{4},13]$.

点评 考查函数值域的概念,配方法求二次函数在闭区间上的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的增函数f(x)满足f(-x)+f(x)=0,若x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A.一定大于0B.一定小于0C.等于0D.正负都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知各项为正的等比数列{an}中,a3=8,Sn为前n项和,S3=14.
(1)求数列{an}的通项公式.
(2)若a1,a2分别为等差数列{bn}的第1项和第2项,求数列{bn}的通项公式及{bn}前n项和Tn
(3)设{cn}的通项公式为cn=$\frac{4}{{b}_{n}{b}_{n+1}}$,求{cn}的前n项和Cn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=x上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的纵坐标的取值范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知集合M={x|-2<x<3},N={x|lgx≥0},则M∩N=(  )
A.(-2,+∞)B.[1,3)C.(-2,-1]D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域:
(1)y=3-2x-x2,x∈[$-\frac{5}{2}$,$\frac{3}{2}$];
(2)y=|x+1|+|2x-2|;
(3)y=x+$\sqrt{1-x}$;
(4)y=$\frac{2x-2}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数$f(x)=\left\{\begin{array}{l}3x-1,x<1\\{2^x},x≥1.\end{array}\right.$,则$f(f(\frac{2}{3}))$=2;若f(f(a))=1,则a的值为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式组$\left\{\begin{array}{l}{|x|=x}\\{\frac{3-x}{3+x}>|\frac{2-x}{2+x}|}\end{array}\right.$的解集是[0,$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)在(0,+∞)上有意义,且单调递增,若f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1)f(4)的值;
(2)若f(x)+f(x+3)≤2.求实数x的取值范围.

查看答案和解析>>

同步练习册答案