分析 (1)令x=y=1即求得f(1)=0;令x=y=2即求得f(4)=2;
(2)依题意,可求f(x(x+3))≤f(4),利用函数的定义域为(0,+∞),且单调递增,即可求得x的取值范围.
解答 解:(1)∵f(xy)=f(x)+f(y),
令x=y=1,
则f(1)=f(1)+f(1),
∴f(1)=0
令x=y=2,
则f(4)=f(2)+f(2),
又f(2)=1,
∴f(4)=1+1=2,
∴f(1)f(4)=0;
(2)∵f(x+3)+f(x)≤2,
∴f(x2+3x)≤f(4),
∵y=f(x)在(0,+∞)上有意义,且单调递增,
∴x2+3x≤4,
解得0<x≤1.
故x的取值范围是(0,1].
点评 本题考查抽象函数及其应用,着重考查赋值法即函数单调性的性质,考查解不等式组的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的图象关于直线$x=\frac{5}{8}π$对称 | |
| B. | f(x)的图象关于点($-\frac{3}{8}π$,0)对称 | |
| C. | 若f(x1)=f(x2),则x1-x2=kπ,k∈Z | |
| D. | f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com