精英家教网 > 高中数学 > 题目详情
7.已知m∥α,n∥β,α∥β.若m,n不相交,则m,n所成角的取值范围是[0,$\frac{π}{2}$].

分析 利用线面、面面位置关系,即可得出结论.

解答 解:∵m∥α,n∥β,α∥β,m,n不相交,
∴m,n所成角的取值范围是[0,$\frac{π}{2}$].
故答案为:[0,$\frac{π}{2}$].

点评 本题考查空间线面、面面位置关系,考查线线角,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.己知集合M={x|-2<x<3},N={x|lgx≥0},则M∩N=(  )
A.(-2,+∞)B.[1,3)C.(-2,-1]D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.长为1,宽为a($\frac{1}{2}$<a<1)的矩形纸片,剪下一个边长等于矩形宽度的正方形(称为第1次操作),剩下矩形长为原矩形的宽,如图,再剪下一个边长等于此时矩形宽度的正方形(称为第2次操作),剩下矩形长为第二个矩形的宽,如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.
(1)当a=$\frac{3}{5}$时,求正整数n的最大值;
(2)记第一个矩形的长为a1=1,第二个矩形的长为a2=a,以此类推,第n个矩形的长为an,数列{an}的前n项和为Sn.若存在一个正数a($\frac{1}{2}$<a<1),使对于任意的正整数n(n≥3),都有an+1<an,求证2<Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知AB=6,BC=4,AC=2$\sqrt{19}$,则tanB=$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知x,y∈R+,x≠y,求证:$\frac{1}{x}$$+\frac{1}{y}$$>\frac{2}{x+y}$;
(2)如何改进上述结论,使之成为-个更好的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)在(0,+∞)上有意义,且单调递增,若f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1)f(4)的值;
(2)若f(x)+f(x+3)≤2.求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果对任意x、y∈R都有f(x+y)=f(x)•f(y),且f(1)=2.
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2014)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知e为自然对数的底数,函数f(x)=ex-e-x+ln($\sqrt{{x}^{2}+1}$+x)+1,f′(x)为其导函数,则f(e)+f′(e)+f(-e)-f′(-e)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2.比较下列各组数的大小.
(1)1.2${\;}^{\frac{1}{2}}$和1.2${\;}^{\frac{1}{5}}$
(2)3${\;}^{-\frac{2}{3}}$和3${\;}^{-\frac{1}{3}}$
(3)0.70.5和0.70.3
(4)0.2-1.5和0.2-1.9   
(5)10.40.85和1;
(6)3-0.7和0.11-0.2

查看答案和解析>>

同步练习册答案