精英家教网 > 高中数学 > 题目详情
17.2.比较下列各组数的大小.
(1)1.2${\;}^{\frac{1}{2}}$和1.2${\;}^{\frac{1}{5}}$
(2)3${\;}^{-\frac{2}{3}}$和3${\;}^{-\frac{1}{3}}$
(3)0.70.5和0.70.3
(4)0.2-1.5和0.2-1.9   
(5)10.40.85和1;
(6)3-0.7和0.11-0.2

分析 根据指数函数的单调性,比较同底的两个指数式的指数,可得它们的大小,对于(6)可以让他们均与1比较后,得到它们的大小关系.

解答 解:(1)∵函数y=1.2x为增函数,
∴1.2${\;}^{\frac{1}{2}}$>1.2${\;}^{\frac{1}{5}}$
(2))∵函数y=3x为增函数,
∴3${\;}^{-\frac{2}{3}}$<3${\;}^{-\frac{1}{3}}$
(3))∵函数y=0.7x为减函数,
∴0.70.5<0.70.3
(4))∵函数y=0.2x为减函数,
∴0.2-1.5<0.2-1.9   
(5))∵函数y=10.4x为增函数,
∴10.40.85>10.40=1;
(6))∵函数y=3x为增函数,函数y=0.11x为减函数,
∴3-0.7<30=1且0.11-0.2>0.110=1.
∴3-0.7<0.11-0.2

点评 本题考查的知识点是指数函数单调性的应用,熟练掌握指数函数的单调性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知m∥α,n∥β,α∥β.若m,n不相交,则m,n所成角的取值范围是[0,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式|3x-7|≤0的解集为{$\frac{7}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列抛物线的焦点坐标和准线方程:
(1)y2=20x;
(2)x2=$\frac{1}{2}$y;
(3)2y2+5x=0;
(4)x2+28y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下列各式的值:
①4lg2+3lg5-lg$\frac{1}{5}$;
②$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$;
③2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
④log2$\sqrt{8+4\sqrt{3}}$+log2$\sqrt{8-4\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若函数y=$\frac{\sqrt{-{x}^{2}-2x+3}}{x-1}$的定义域为A,函数y=log2x,x∈[$\frac{1}{2}$,8]的值域为B.
(1)求A∪B,(∁RA)∩B;
(2)若C={x|x<a},A∩C≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列各式那些一定成立,哪些不一定成立,x,y为非零实属,其中a>0,a≠1,并说明理由.
(1)logax2=2logax.
(2)logax2=2loga|x|.
(3)loga|x•y|=loga|x|•loga|y|
(4)logax3>logax2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=2x+1+$\sqrt{1-2x}$的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.关于x的不等式($\frac{1}{2}$)2x≤2-1-x的解集为A,函数f(x)是R上的增函数,且经过(-3,-1)和(1,2)两点,集合B={x|f(x)<-1或f(x)>2}.
(1)求集合A;
(2)求集合B;
(3)若x∈A且a>1,求函数h(x)=loga(a2x)•loga(ax)的最值.

查看答案和解析>>

同步练习册答案