精英家教网 > 高中数学 > 题目详情
9.判断下列各式那些一定成立,哪些不一定成立,x,y为非零实属,其中a>0,a≠1,并说明理由.
(1)logax2=2logax.
(2)logax2=2loga|x|.
(3)loga|x•y|=loga|x|•loga|y|
(4)logax3>logax2

分析 由对数的运算法则和对数式的性质逐一核对四个命题得答案.

解答 解:当x<0时,logax2=2loga|x|,(1)不一定成立;
logax2=2loga|x|,(2)成立;
loga|x•y|=loga|x|+loga|y|,(3)不一定成立;
当a>1,0<x<1时,logax3>logax2 不成立.
∴(2)一定成立;(1),(3),(4)不一定成立.

点评 本题考查对数的运算法则和对数式的性质,注意运算法则的使用范围,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如果对任意x、y∈R都有f(x+y)=f(x)•f(y),且f(1)=2.
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2014)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A($\sqrt{2}$,$\frac{π}{4}$),B是曲线ρ=-2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2.比较下列各组数的大小.
(1)1.2${\;}^{\frac{1}{2}}$和1.2${\;}^{\frac{1}{5}}$
(2)3${\;}^{-\frac{2}{3}}$和3${\;}^{-\frac{1}{3}}$
(3)0.70.5和0.70.3
(4)0.2-1.5和0.2-1.9   
(5)10.40.85和1;
(6)3-0.7和0.11-0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=3x+2x-$\frac{1}{2}$的零点所在的大致区间是 (  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a-3$\sqrt{a}$+1=0(a>1).求:
(1)$\frac{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}{{a}^{\frac{1}{4}}+{a}^{-\frac{1}{4}}}$;
(2)$\frac{{a}^{\frac{3}{2}}-{a}^{-\frac{3}{2}}}{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当0$<x<\frac{π}{6}$,f(x)=$\frac{-4+cos2x+8si{n}^{2}x}{sin2x}$的值域为(-∞,-$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把-$\frac{8π}{3}$化成角度是(  )
A.-960°B.-480°C.-120°D.-60°

查看答案和解析>>

同步练习册答案