精英家教网 > 高中数学 > 题目详情
20.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A($\sqrt{2}$,$\frac{π}{4}$),B是曲线ρ=-2sinθ上的动点,求|PA|+|PB|的最小值.

分析 (1)由直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)消去参数t,可得x+y=$\sqrt{2}$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为极坐标方程;
(2)定点A($\sqrt{2}$,$\frac{π}{4}$),化为A(1,1).曲线ρ=-2sinθ化为ρ2=-2ρsinθ,可得直角坐标方程:x2+(y+1)2=1.可得圆心C(0,-1).连接AC交直线l于点P,交⊙C于点B,可得|PA|+|PB|的最小值=|AC|-r.

解答 解:(1)由直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)消去参数t,可得x+y=$\sqrt{2}$,化为极坐标方程ρcosθ+ρsinθ=$\sqrt{2}$;
(2)定点A($\sqrt{2}$,$\frac{π}{4}$),化为A(1,1).
曲线ρ=-2sinθ化为ρ2=-2ρsinθ,∴直角坐标方程为:x2+y2=-2y,
配方为x2+(y+1)2=1.
可得圆心C(0,-1).
连接AC交直线l于点P,交⊙C于点B,
|AC|=$\sqrt{{1}^{2}+(1+1)^{2}}$=$\sqrt{5}$,
∴|PA|+|PB|的最小值=|AC|-r=$\sqrt{5}$-1.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为直角坐标方程、直线与圆相交问题、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.关于x的不等式0.23-2x<125的解集为(  )
A.$\left\{{x\left|{x<\frac{1}{2}}\right.}\right\}$B.$\left\{{x\left|{x>\frac{1}{2}}\right.}\right\}$C.{x|x≥-1}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c-b)a=2log(c+b)a•log(c-b)a.
(2)已知log${\;}_{{a}_{1}}$b1=log${\;}_{{a}_{2}}$b2=…=log${\;}_{{a}_{n}}$bn=λ,求证:log${\;}_{{a}_{1}{a}_{2}…{a}_{n}}$(b1b2…bn)=λ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式|3x-7|≤0的解集为{$\frac{7}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.方程2x-x3=0的一个近似解为1.5.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列抛物线的焦点坐标和准线方程:
(1)y2=20x;
(2)x2=$\frac{1}{2}$y;
(3)2y2+5x=0;
(4)x2+28y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下列各式的值:
①4lg2+3lg5-lg$\frac{1}{5}$;
②$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$;
③2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
④log2$\sqrt{8+4\sqrt{3}}$+log2$\sqrt{8-4\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列各式那些一定成立,哪些不一定成立,x,y为非零实属,其中a>0,a≠1,并说明理由.
(1)logax2=2logax.
(2)logax2=2loga|x|.
(3)loga|x•y|=loga|x|•loga|y|
(4)logax3>logax2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在R上的奇函数,且x>0时,f(x)=${log}_{\frac{1}{2}}$x.
(1)求x<0时,函数f(x)的解析式;
(2)若f(x)≤1,求实数x的取值范围.

查看答案和解析>>

同步练习册答案