精英家教网 > 高中数学 > 题目详情
12.计算下列各式的值:
①4lg2+3lg5-lg$\frac{1}{5}$;
②$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$;
③2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
④log2$\sqrt{8+4\sqrt{3}}$+log2$\sqrt{8-4\sqrt{3}}$.

分析 ①直接利用对数的运算性质化简求值;②利用对数的换底公式化简;③利用对数的差等于商的对数,对数的和等于乘积的对数化简求值;④利用对数的和等于乘积的对数结合平方差公式运算.

解答 解:①4lg2+3lg5-lg$\frac{1}{5}$=4lg2+3lg5-(lg1-lg5)=4(lg2+lg5)=4;
②$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$=$\frac{\frac{\frac{1}{2}lg2}{lg5}•\frac{4lg3}{2lg7}}{\frac{-lg3}{2lg5}•\frac{\frac{2}{3}lg2}{lg7}}$=$\frac{1}{-\frac{1}{3}}=-3$;
③2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$=$lo{g}_{3}4-lo{g}_{3}\frac{32}{9}+lo{g}_{3}8-3$=$lo{g}_{3}\frac{36}{32}+lo{g}_{3}8-3$=log39-3=-1;
④log2$\sqrt{8+4\sqrt{3}}$+log2$\sqrt{8-4\sqrt{3}}$=$lo{g}_{2}\sqrt{64-48}$=$lo{g}_{2}\sqrt{16}=lo{{g}_{2}}^{4}=2$.

点评 本题考查对数的运算性质,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知x,y∈R+,x≠y,求证:$\frac{1}{x}$$+\frac{1}{y}$$>\frac{2}{x+y}$;
(2)如何改进上述结论,使之成为-个更好的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知:梯形ABCD中,AD∥EF∥BC,AE=2BE,AD=2,BC=5,设$\overrightarrow{AD}$=$\overrightarrow{a}$,用$\overrightarrow{a}$表示$\overrightarrow{EF}$,$\overrightarrow{CB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A($\sqrt{2}$,$\frac{π}{4}$),B是曲线ρ=-2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.观察下面数列的特点,用适当的数填空,并写出每个数列的通项公式:
(1)10,20,30,40,50;
(2)1,$\sqrt{2}$,$\sqrt{3}$,2,$\sqrt{5}$,$\sqrt{6}$,$\sqrt{7}$;
(3)1,4,7,10,13,16,19;
(4)-$\frac{1}{2}$,$\frac{3}{4}$,-$\frac{5}{6}$,$\frac{7}{8}$,-$\frac{9}{10}$;
(5)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2.比较下列各组数的大小.
(1)1.2${\;}^{\frac{1}{2}}$和1.2${\;}^{\frac{1}{5}}$
(2)3${\;}^{-\frac{2}{3}}$和3${\;}^{-\frac{1}{3}}$
(3)0.70.5和0.70.3
(4)0.2-1.5和0.2-1.9   
(5)10.40.85和1;
(6)3-0.7和0.11-0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a-3$\sqrt{a}$+1=0(a>1).求:
(1)$\frac{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}{{a}^{\frac{1}{4}}+{a}^{-\frac{1}{4}}}$;
(2)$\frac{{a}^{\frac{3}{2}}-{a}^{-\frac{3}{2}}}{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是偶函数,且其图象是连续不断的,当x>0时f(x)是单调函数,则满足f(x)=f($\frac{x+3}{x+2}$)的所有x之和为(  )
A.-4B.-3C.-1D.8

查看答案和解析>>

同步练习册答案