精英家教网 > 高中数学 > 题目详情

(本小题满分12分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第个月的当月利润率,例如:
(Ⅰ); (Ⅱ)求第个月的当月利润率
(Ⅲ)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.

(Ⅰ)
(2)
(Ⅲ)该企业经销此产品期间,第40个月的当月利润率最大,最大值为

解析试题分析:(Ⅰ)由题意得
.     …………………………………2分
(2)当时,
.          ----------4分
时,
    
                7分
∴当第个月的当月利润率为
  …………8分
(Ⅲ)当时,是减函数,此时的最大值为  9分
时, 
当且仅当时,即时,,又
∴当时,      ………………11分
答:该企业经销此产品期间,第40个月的当月利润率最大,最大值为        …12分
考点:本题主要考查函数模型,导数的应用。
点评:典型题,通过构建函数模型利用导数加以解决,这是近些年来高考考查的重要题型之一。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
(本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题共两个小题,每题5分,满分10分)
① 已知不等式的解集是,求的值;
② 若函数的定义域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若,求的单调区间;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:
(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。
(1)解关于的不等式
(2)当时,总有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知:
(1)求的取值范围;
(2)求函数的最大值和最小值及对应的x值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
定义在上的函数满足,且当时,
(1)求上的表达式;
(2)若,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)
(1)若 log2 [log (log2 x)]=0,求x。;
(2)若,求的值。

查看答案和解析>>

同步练习册答案