精英家教网 > 高中数学 > 题目详情
(2013•延庆县一模)已知函数f(x)=-2a2lnx+
12
x2+ax
(a∈R).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))的切线方程;
(Ⅱ)讨论函数f(x)的单调性.
分析:可得函数的定义域和导函数,(Ⅰ)代入a=1可得f(1),和f'(1),进而可得切线方程;(Ⅱ)可得导函数为f′(x)=
(x+2a)(x-a)
x
,分a=0和a>0即a<0三类分别求得导数的正负情况,进而可得单调性.
解答:解:函数f(x)的定义域为(0,+∞),f′(x)=-
2a2
x
+x+a
.…(2分)
(Ⅰ) 当a=1时,f(1)=
3
2
,f'(1)=-2+1+1=0,
所以曲线y=f(x)在点(1,f(1))的切线方程为y=
3
2
.…(5分)
(Ⅱ)f′(x)=
x2+ax-2a2
x
=
(x+2a)(x-a)
x
,…(6分)
(1)当a=0时,f'(x)=x>0,f(x)在定义域为(0,+∞)上单调递增,…(7分)
(2)当a>0时,令f'(x)=0,得x1=-2a(舍去),x2=a,
当x变化时,f'(x),f(x)的变化情况如下:
 x  (0,a)  a  (a,+∞)
 f′(x) -  0 +
 f(x)  减  极小值  增
此时,f(x)在区间(0,a)单调递减,在区间(a,+∞)上单调递增;  …(10分)
(3)当a<0时,令f'(x)=0,得x1=-2a,x2=a(舍去),
当x变化时,f'(x),f(x)的变化情况如下:
 x  (0,-2a) -2a  (-2a,+∞)
 f′(x) -  0 +
 f(x)  减  极小值  增
此时,f(x)在区间(0,-2a)单调递减,在区间(-2a,+∞)上单调递增.…(13分)
点评:本题考查利用导数研究函数的单调性,涉及切线方程的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•延庆县一模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5
日均浓度
0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类型 轻度污染 中度污染 重度污染 严重污染
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=
log4x, x>0
3x, x≤0
,则f[f(
1
16
)]
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案