精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-2ax)e
x
a
,其中a为常数.
(Ⅰ)若a=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(II)求函数f(x)的单调区间.
(I)当a=1时,f(x)=(x2-2x)ex,f′(x)=(2x-2)ex+(x2-2x)ex=(x2-2)ex
当x=0时,f(0)=0,f′(0)=-2,
所以曲线y=f(x)在点(0,f(0))处的切线方程y-0=-2(x-0),即y=-2x.
(II)f(x)的定义域为R,则f′(x)=(2x-2a)e
x
a
+(x2-2ax)e
x
a
1
a
=(
1
a
x2-2a)e
x
a

(1)当a>0时,由(
1
a
x2-2a)e
x
a
>0,得x2-2a2>0,解得x<-
2
a或x>
2
a,
(
1
a
x2-2a)e
x
a
<0,得x2-2a2<0,解得-
2
a<x<
2
a,
故f(x)的增区间为(-∞,-
2
a),(
2
a,+∞),减区间为(-
2
a,
2
a);
(2)当a<0时,由(
1
a
x2-2a)e
x
a
>0,得x2-2a2<0,解得
2
a<x<-
2
a,
(
1
a
x2-2a)e
x
a
<0,得x2-2a2>0,解得x<
2
a或x>-
2
a,
故f(x)的增区间为(
2
a,-
2
a),减区间为(-∞,
2
a),(-
2
a,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案