精英家教网 > 高中数学 > 题目详情
近年来,我国很多城市都出现了严重的雾霾天气.为了更好地保护环境,2012年国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区 的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2014年1月1日到 2014年3月31日这90天对某居民区的PM2.5平均浓度的监测数据统计如下:
组别  PM2.5浓度(微克/立方米) 频数(天)
第一组 (0,35] 24
第二组 (35,75] 48
第三组 (75,115] 12
第四组 >115 6
(Ⅰ)在这90天中抽取30天的数据做进一步分析,每一组应抽取多少天?
(Ⅱ)在(Ⅰ)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求至少有一天平均浓度超过115(微克/立方米)的概率.
考点:古典概型及其概率计算公式,分层抽样方法
专题:概率与统计
分析:(Ⅰ)由这90天中的数据中,各个数据之间存在差异,故应采取分层抽样,计算出抽样比k后,可得每一组应抽取多少天?
(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2,列举出从6天任取2天的所有情况和满足至少有一天平均浓度超过115(微克/立方米)的情况数,代入古典概型概率计算公式,可得答案.
解答: 解:(Ⅰ)∵这90天中的数据中,各个数据之间存在差异,
∴这90天中抽取30天,应采取分层抽样,
则k=
30
90
=
1
3

则每一组抽取24×
1
3
=8天;
第二组抽取48×
1
3
=16天;
第三组抽取12×
1
3
=4天;
第四组抽取6×
1
3
=2天. …(4分)
(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2,
则从6天任取2天的情况有:
AB,AC,AD,A1,A2,
BC,BD,B1,B2,CD,
C1,C2,D1,D2,12,共15种      …(8分)
记“至少有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,12共9种.
所以,所求事件A的概率P(A)=
9
15
=
3
5
.          …(12分)
点评:此题考查了古典概型概率计算公式,分层抽样,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数
3+i
2-i
等于(  )
A、1-iB、-1-i
C、1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),短轴的一个端点为M,
△MF1F2为等边三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点(0,-2)的直线l与椭圆C相交于A,B两点,在直线y=-
1
2
上是否存在点N,使得四边形OANB为矩形?若存在,求出N点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知定点F(1,0),点P在y轴上运动,点M在x轴上,点N为平面内的动点,且满足
PM
PF
=0,
PM
+
PN
=0.
(1)求动点N的轨迹C的方程;
(2)设点Q是直线l:x=-1上任意一点,过点Q作轨迹C的两条切线QS,QT,切点分别为S,T,设切线QS,QT的斜率分别为k1,k2,直线QF的斜率为k0,求证:k1+k2=2k0

查看答案和解析>>

科目:高中数学 来源: 题型:

若正项数列{an}满足条件:存在正整数k,使得
an+k
an
=
an
an-k
对一切n∈N*,n>k都成立,则称数列{an}为k级等比数列.
(1)已知数列{an}为2级等比数列,且前四项分别为4,
1
3
,2,1,求a8•a9的值;
(2)若an=2nsin(ωn+
π
6
)(ω为常数),且{an}是3级等比数列,求ω所有可能值的集合,并求ω取最小正值时数列{an}的前3n项和S3n
(3)证明:{an}为等比数列的充要条件是{an}既为2级等比数列,{an}也为3级等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

有4名学生,分别插入A、B两班学习,求每班最多只能接收3名学生,且甲不去A班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算1+2+
1
2
+3+
1
3
+4+
1
4
+…+2012+
1
2012
的程序框图.
(1)程序框图中①应填
 
,②应填
 

(2)写出程序框图对应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2
3
sinxcosx+3cos2x.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)已知f(a)=3,且α∈(0,
π
2
),求α的值.

查看答案和解析>>

同步练习册答案