精英家教网 > 高中数学 > 题目详情
16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

分析 设PA=1,由已知求出PB=2,AB=$\sqrt{3}$,AC=$\frac{\sqrt{3}}{3}$,CD=$\frac{\sqrt{2}}{\sqrt{3}}$,从而得到AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=1,由此能求出PD与平面ABC所成角的大小.

解答 解:设PA=1,
∵在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,
∴∠ABP=30°,∠ACP=60°,∠ADP是PD与平面ABC所成角,
∴PB=2,AB=$\sqrt{4-1}$=$\sqrt{3}$,AC=1×cot60°=$\frac{\sqrt{3}}{3}$,CD=$\frac{1}{2}BC$=$\frac{1}{2}\sqrt{3-\frac{1}{3}}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{\frac{1}{3}+\frac{2}{3}}$=1,
∴tan$∠ADP=\frac{PA}{AD}$=1,
∴∠ADP=45°.
∴PD与平面ABC所成角的大小为45°.
故答案为:45°.

点评 本题考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,且a4=5,S9=54.
(1)求数列{an}的通项公式与Sn
(2)若bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对某电子元件进行寿命追踪调查,情况如下.
寿命(h)100~200200~300300~400400~500500~600
个  数2030804030
(1)画出频率分布直方图;
(2)估计电子元件寿命在400h以上的在总体中占的比例;
(3)估计电子元件寿命的众数,中位数及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正三棱锥V-ABC的底面边长是a,侧面与底面成60°的二面角.求
(1)棱锥的侧棱长;
(2)侧棱与底面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,$\overrightarrow{m}$=(2a-c,cosC),$\overrightarrow{n}$=(b,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大小;
(2)若b=1,当△ABC面积取最大时,求△ABC内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z满足(1-3i)z=3+i,则z=(  )
A.一iB.iC.$\frac{3}{5}$-$\frac{4}{5}$iD.$\frac{3}{5}$+$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=$\frac{2x+1}{x+1}$.
(1)用定义证明函数的单调性并写出单调区间;
(2)求f(x)在[3,5]上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间是(  )
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在“①高一数学课本中的难题;②所有的正三角形; ③方程x2-4=0的实数解”中,能够表示成集合的是(  )
A.B.C.②③D.①②③

查看答案和解析>>

同步练习册答案