精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>O),椭圆C焦距为:2c,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(I)求椭圆c的方程;
(II)设点P(-,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围.
【答案】分析:(I)利用以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形,可求几何量,从而可得椭圆的方程;
(II)设直线l的方程,代入椭圆方程,利用韦达定理,进而利用直线F1B2,F1B1的方程,可得G在正方形Q内(包括边界)的充要条件,由此可得直线l斜率的取值范围.
解答:解:(I)由题设知,a2=8,b=c,∴
∴椭圆C的方程为
(II)点P的坐标为(-4,0),设直线l的方程为y=k(x+4)
如图,
设M(x1,y1),N(x2,y2),线段MN的中点为G(x,y),
y=k(x+4)代入椭圆方程,消去y可得(1+2k2)x2+16k2x+32k2-8=0
由△=(16k22-4(1+2k2)(32k2-8)>0,可得
又x1+x2=-
∴x==-,y=k(x+4)=
∵x=-≤0,
∴G不可能在y轴的右边
又直线F1B2,F1B1的方程分别为y=x+2,y=-x-2,所以G在正方形Q内(包括边界)的充要条件为
,即,解得,满足
故直线l斜率的取值范围是[].
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案