精英家教网 > 高中数学 > 题目详情
已知曲线C:
x=
3
+2cosθ
y=1+2sinθ
(θ为参数,0≤θ<2π),
(1)将曲线C化为普通方程;
(2)求出该曲线在以直角坐标系原点为极点,x轴非负半轴为极轴的极坐标系下的极坐标方程.
分析:(1)欲将曲线C化为普通方程,只须要消去参数θ即可,利用三角函数中的平方关系即可消去参数θ.
(2)欲求极坐标系下的极坐标方程,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系即可.
解答:解:(1)∵曲线C:
x=
3
+2cosθ
y=1+2sinθ
(θ为参数,0≤θ<2π),
2cosθ=x-
3
2sinθ=y-1
,两式平方相加得:
x2+y2-2
3
x-2y=0.即为曲线C化为普通方程.
(2)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换得:
ρ2-2
3
ρcosθ-2ρsinθ=0,
即:ρ=2
3
cosθ+2sinθ,即为极坐标系下的极坐标方程.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+
3
)2+y2=16
,点A(
3
,0)
,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,D,F分别为曲线E与x轴的左,右两交点,若直线DP与曲线E相交于异于D的点N,证明△NPF为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)和直线:
x=2+
1
2
t
y=
3
+
3
2
t
(为参数),则曲线C上的点到直线距离的最小值为
3
-1
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x=2cosθ
y=3+2sinθ
(θ∈R)
,一动直线l过A(-1,0)与曲线C相交于P,Q两点,M为P,Q中点,l与直线x+3y+6=0相交于N,则|AM|•|AN|=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:(x-1)2+y2=1,点A(-1,0)及点B(2,a),从点A观察点B,要使视线不被曲线C拦住,则a的取值范围是(    )

A.(-∞,-1)∪(1,+∞)                 B.(-∞,-)∪(,+∞)

C.(,+∞)                               D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步练习册答案