精英家教网 > 高中数学 > 题目详情
已知曲线C:
x=2cosθ
y=3+2sinθ
(θ∈R)
,一动直线l过A(-1,0)与曲线C相交于P,Q两点,M为P,Q中点,l与直线x+3y+6=0相交于N,则|AM|•|AN|=
5
5
分析:设连接CA并延长交直线x+3y+6=0相交于G,可得CG⊥NG,由垂径定理得CM⊥PQ,可得△AGN∽△AMC,将比例线段转化为等积式,得|AM|•|AN|=|AC|•|AG|=5.
解答:解:把曲线C:
x=2cosθ
y=3+2sinθ
(θ∈R)
 消去参数θ化为普通方程为 x2+(y-3)2=4.  
设连接CA并延长交直线x+3y+6=0相交于G,连接CM可得AC的斜率为kAC=
3-0
0+1
=3.
∵直线x+3y+6=0的斜率为K1=-
1
3
,kAC•k1=3×(-
1
3
)=-1,

∴直线AC与直线x+3y+6=0垂直.

又∵圆C中,M为弦PQ的中点,∴CM⊥PQ,

因此△AGN∽△AMC,可得
AC
AN
=
AM
AG
,∴|AM|•|AN|=|AC|•|AG|.
又∵|AC|=
(-1-0)2+(3-0)2
=
10
,AG=
|-1+3×0+6|
10
=
10
2

∴|AC|•|AG|=
10
×
10
2
=5,
故答案为 5.
点评:本题考查了直线与圆相交的性质,属于中档题,利用垂径定理得到三角形相似是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)已知曲线C的参数方程为
x=1+2t
y=at2
(t为参数,a∈R),点M(5,4)在曲线C 上,则曲线C的普通方程为
 

(2)已知不等式x+|x-2c|>1的解集为R,则正实数c的取值范围是
 

(3)如图,PC切圆O于点C,割线PAB经过圆心A,PC=4,PB=8,则S△OBC
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+y2=4(x≥0,y≥0),与抛物线x2=y及y2=x的图象分别交于点A(x1,y1),B(x2,y2),则
y
2
1
+
y
2
2
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=
9-x2
,与直线l:y=x+b没有公共点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
x2
9
-
y2
16
=1
和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
上述命题中错误的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=2sinθ,以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,直线l的参数方程为
x=
2
2
t-2
y=
2
2
t
(t为参数),则直线l与曲线C相交所得的弦的弦长为(  )
A、
2
B、2
C、4
D、1

查看答案和解析>>

同步练习册答案