精英家教网 > 高中数学 > 题目详情
以下有四个等式:其中能够成立的有(  )
(1)1-sin2x=log3
1
4
 
(2)sin2x-cos2x=-2 
(3)tan2x+1=2tanx 
(4)sin2x=1.01.
分析:(1)已知等式左边利用同角三角函数间的基本关系化简,右边利用对数的性质求出范围,即可做出判断;
(2)已知等式左边利用二倍角的余弦函数公式化简,根据余弦函数的图象与性质求出余弦函数的值域,即可做出判断;
(3)根据等式得到tanx=1时,等式成立;
(4)开方求出sinx的值,根据正弦函数的值域即可做出判断.
解答:解:(1)1-sin2x=cos2x≥0,log3
1
4
<0,不能成立;
(2)sin2x-cos2x=-cos2x∈[-1,1],不能为-2;
(3)tan2x+1=2tanx,当tanx=1时,等式成立;
(4)sin2x=1.01,开方得:sinx=
101
10
>1,不成立,
则能够成立的有1个.
故选D
点评:此题考查了同角三角函数间的基本关系,以及正弦、余弦函数的值域,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•福建模拟)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n

所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号
①③
①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下有四个等式:其中能够成立的有(  )
(1)1-sin2x=log3
1
4
 
(2)sin2x-cos2x=-2 
(3)tan2x+1=2tanx 
(4)sin2x=1.01.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:福建模拟 题型:填空题

考察等式:
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
Ckm
Cr-kn-m
Crn
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
Crn

所以
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省宝鸡市金台区高一(下)4月质量检测数学试卷(解析版) 题型:选择题

以下有四个等式:其中能够成立的有( )
(1)1-sin2x=log3 
(2)sin2x-cos2x=-2 
(3)tan2x+1=2tanx 
(4)sin2x=1.01.
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案