已知椭圆和椭圆的离心率相同,且点在椭圆上.
(1)求椭圆的方程;
(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。求证:无论点怎样变化,的面积为常数,并求出此常数.
(1)椭圆的方程为;(2)的面积为常数.
解析试题分析:(1)由题知,且,解这个方程组求得即可得椭圆的方程;(2)涉及直线与曲线的关系的问题,多是将直线方程与曲线方程联立再用韦达定理解决.此题中有两个椭圆,将哪个椭圆的方程与直线方程联立?此题意即直线与的交点的中点在上,故应将直线方程与的方程联立由韦达定理得中点坐标,再将中点坐标代入的方程.然后求出三角形OAB的面积的表达式,再利用前面所得关系式化为一常数即可.
试题解析:(1)由题知,且 即,椭圆的方程为; 4分
(2)当直线的斜率不存在时,必有,此时, 5分
当直线的斜率存在时,设其斜率为、点,则
与椭圆联立,得,设,
则 即 8分
又 9分
综上,无论怎样变化,的面积为常数. 12分
考点:1、椭圆的方程;2、直线与圆锥曲线的位置关系.
科目:高中数学 来源: 题型:单选题
抛物线的顶点在坐标原点,焦点与双曲线-=1的一个焦点重合,则该抛物线的标准方程可能是( )
A.x2=4y | B.x2=-4y |
C.y2=-12x | D.x2=-12y |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为( )
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知双曲线 (a>0,b>0)的两条渐近线与抛物线(p>0)分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=
A.1 B. C.2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知点,分别是双曲线的左、右焦点,过且垂直于 轴的直线与双曲线交于,两点,若是钝角三角形,则该双曲线离心率的取值范围是( )
A. | B. |
C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com