精英家教网 > 高中数学 > 题目详情
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ABC为等边三角形,AD=DE=2AB,F为CD的中点.
(I)求证:AF平面BCE;
(II)求二面角D﹣BC﹣E的正弦值.

(I)证明:取CE的中点G,连FG、BG.
∵F为CD的中点,
∴GFDE且GF=DE
∵AB⊥平面ACD,DE⊥平面ACD,
∴ABDE,∴GFAB.
又AB=DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AFBG.
∵AF平面BCE,BG平面BCE,
∴AF平面BCE.
(II)过E作EM⊥面BCD,垂足为M,
过E作EN⊥BC,则∠ENM为二面角D﹣BC﹣E的平面角
设AB=a,则AD=DE=2a,
所以BC=BD=a,AF=2a,CE=2a
由(I)BGAF,
∴BG⊥CD
∵BG⊥DE,CD∩DE=D,
∴BG⊥面CDE
由VB﹣CDE=VE﹣BCD,可得EM=
在△BCE中,
∴EN=
设二面角D﹣BC﹣E的平面角θ,则sinθ=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点
(Ⅰ) 求证:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD为等边三角形,AD=DE=2AB,F为CD的中点
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F为CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ) 若∠CAD=90°,求三棱锥F-BCE的体积.

查看答案和解析>>

同步练习册答案