精英家教网 > 高中数学 > 题目详情
设f(x)=|x|+2|x-a|(a>0).
(1)当a=1时,解不等式f(x)≤8.
(2)若f(x)≥6恒成立,求实数a的取值范围.
分析:(1)将a=1代入,利用零点分段法,可将函数的解析式化成分段函数的形式,进而分类讨论各段上f(x)≤8的解,最后综合讨论结果,可得不等式f(x)≤8的解集.
(2)利用零点分段法,可将函数的解析式化成分段函数的形式,结合一次函数的单调性可分析出函数的f(x)的单调性,进而求出函数f(x)的最小值,得到实数a的取值范围.
解答:解:(1)当a=1时,f(x)=|x|+2|x-1|=
2-3x,x<0
2-x,0≤x≤1
3x-2,x>1

当x<0时,由2-3x≤8得,-2≤x<0
当0≤x≤1时,由2-x≤8得,0≤x≤1
当x>1时,由3x-2≤8得,1<x≤
10
3

综上所述不等式f(x)≤8的解集为[-2,
10
3
]
(2)∵f(x)=|x|+2|x-a|=
2a-3x,x<0
2a-x,0≤x≤a
3x-2a,x>a

则f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,
∴当x=a时,f(x)取最小值a
若f(x)≥6恒成立,则a≥6
∴实数a的取值范围为[6,+∞).
点评:本题考查的知识点是分段函数的应用,绝对值不等式,其中利用零点分段法,将函数的解析式化成分段函数的形式,进而分类讨论是解答此类问题的通法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案